提交 19ee376c 编写于 作者: H huanghui

add confusion_mul_grad fusion pass

上级 c478be0f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fusion/confusion_mul_grad_fusion.h"
#include <utility>
#include <memory>
#include <vector>
#include <algorithm>
#include "session/anf_runtime_algorithm.h"
#include "ir/primitive.h"
#include "utils/utils.h"
#include "pipeline/static_analysis/abstract_value.h"
#include "pre_activate/common/helper.h"
namespace mindspore {
namespace opt {
namespace {
const size_t kConfusionMulGradOutputNum = 2;
CNodePtr CreateFusionNode(const FuncGraphPtr &graph, const CNodePtr &reduce_sum, const AnfNodePtr &mul0_anf,
const AnfNodePtr &input3) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(reduce_sum);
MS_EXCEPTION_IF_NULL(mul0_anf);
MS_EXCEPTION_IF_NULL(input3);
auto mul0 = mul0_anf->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(mul0);
auto prim = std::make_shared<Primitive>(kConfusionMulGradOpName);
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), mul0->input(1), mul0->input(2), input3};
auto fusion_node = graph->NewCNode(inputs);
MS_EXCEPTION_IF_NULL(fusion_node);
fusion_node->set_scope(reduce_sum->scope());
AnfAlgo::CopyNodeAttr(kAttrAxis, reduce_sum, fusion_node);
AnfAlgo::CopyNodeAttr(kAttrKeepDims, reduce_sum, fusion_node);
auto types = {AnfAlgo::GetOutputInferDataType(mul0, 0), AnfAlgo::GetOutputInferDataType(reduce_sum, 0)};
auto shapes = {AnfAlgo::GetOutputInferShape(mul0, 0), AnfAlgo::GetOutputInferShape(reduce_sum, 0)};
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, fusion_node.get());
return fusion_node;
}
AnfNodePtr GetMul0(const FuncGraphPtr &graph, const AnfNodePtr &input2, const AnfNodePtr &mul1) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(input2);
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
if (manager->node_users().find(input2) == manager->node_users().end()) {
MS_LOG(EXCEPTION) << "node has no output in manager";
}
AnfNodePtr mul0 = nullptr;
const AnfNodeIndexSet &outputs_set = manager->node_users()[input2];
// input2 must be the 2rd input of mul0
auto it = std::find_if(outputs_set.begin(), outputs_set.end(), [&mul1](const std::pair<AnfNodePtr, int> &node_index) {
return node_index.first != mul1 && node_index.second == 2;
});
if (it != outputs_set.end() && AnfAlgo::GetCNodeName(it->first) == prim::kPrimMul->name()) {
mul0 = it->first;
}
return mul0;
}
} // namespace
const BaseRef ConfusionMulGradFusion::DefinePattern() const {
VectorRef mul1({prim::kPrimMul, input3_, input2_});
VectorRef reduce_sum({prim::kPrimReduceSum, mul1});
return reduce_sum;
}
const AnfNodePtr ConfusionMulGradFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &equiv) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(equiv);
auto input2 = utils::cast<AnfNodePtr>((*equiv)[input2_]);
auto input3 = utils::cast<AnfNodePtr>((*equiv)[input3_]);
auto reduce_sum = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(reduce_sum);
auto mul1 = reduce_sum->input(1);
if (IsUsedByOthers(graph, mul1)) {
MS_LOG(INFO) << "Mul1 is used by others, quit fusion!";
return nullptr;
}
auto mul0 = GetMul0(graph, input2, mul1);
if (mul0 == nullptr) {
MS_LOG(INFO) << "Mul0 do not exist, quit fusion";
return nullptr;
}
auto fusion_node = CreateFusionNode(graph, reduce_sum, mul0, input3);
std::vector<AnfNodePtr> fusion_node_outputs;
CreateMultipleOutputsOfAnfNode(graph, fusion_node, kConfusionMulGradOutputNum, &fusion_node_outputs);
auto manage = graph->manager();
MS_EXCEPTION_IF_NULL(manage);
manage->Replace(mul0, fusion_node_outputs[0]);
return fusion_node_outputs[1];
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
#include <memory>
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
class ConfusionMulGradFusion : public PatternProcessPass {
public:
explicit ConfusionMulGradFusion(bool multigraph = true)
: PatternProcessPass("confusion_mul_grad_fusion", multigraph) {
input2_ = std::make_shared<Var>();
input3_ = std::make_shared<Var>();
}
~ConfusionMulGradFusion() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
private:
VarPtr input2_;
VarPtr input3_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
......@@ -111,6 +111,7 @@ constexpr auto kFusedMulAddOpName = "FusedMulAdd";
constexpr auto kFusedMulAddNOpName = "FusedMulAddN";
constexpr auto kFusedMulApplyMomentumOpName = "FusedMulApplyMomentum";
constexpr auto kBiasAddOpName = "BiasAdd";
constexpr auto kConfusionMulGradOpName = "ConfusionMulGrad";
// attr key name
constexpr auto kAttrInputNames = "input_names";
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "pre_activate/common/optimizer.h"
#include "pre_activate/ascend/ir_fusion/confusion_mul_grad_fusion.h"
#include "debug/anf_ir_dump.h"
namespace mindspore {
namespace opt {
class TestHWOptimizeConfusionMulGradFusion : public BackendCommon {
public:
TestHWOptimizeConfusionMulGradFusion() : get_py_fun_("gtest_input.pre_activate.confusion_mul_grad_fusion", true) {}
~TestHWOptimizeConfusionMulGradFusion() override = default;
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWOptimizeConfusionMulGradFusion, test_fusion) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_confusion_mul_grad_fusion", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{1, 1, 1, 1};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 3; ++i) {
args_spec_list.push_back(x_abstract);
}
auto fg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::ConfusionMulGradFusion>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(fg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_confusion_mul_grad_fusion", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
} // namespace opt
} // namespace mindspore
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import operations as P
from mindspore.ops import Primitive
mul = P.Mul()
reduce_sum = P.ReduceSum()
confusion_mul_grad = Primitive('ConfusionMulGrad')
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
axis = 2
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_confusion_mul_grad_fusion(tag):
fns = FnDict()
@fns
def before(input1, input2, input3):
output1 = mul(input1, input2)
mul1 = mul(input3, input2)
# input axis will be convert to attr in step ConstructKernelGraph
output2 = reduce_sum(mul1, axis)
res = make_tuple(output1, output2)
return res
@fns
def after(input1, input2, input3):
res = confusion_mul_grad(input1, input2, input3)
item0 = tuple_getitem(res, 0)
item1 = tuple_getitem(res, 1)
res = make_tuple(item0, item1)
return make_tuple(res)
return fns[tag]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册