Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
19c5921c
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
19c5921c
编写于
6月 09, 2020
作者:
Z
zhaozhenlong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
composed op CosineEmbeddingLoss
上级
95c8de97
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
90 addition
and
2 deletion
+90
-2
mindspore/_checkparam.py
mindspore/_checkparam.py
+9
-0
mindspore/nn/loss/__init__.py
mindspore/nn/loss/__init__.py
+3
-2
mindspore/nn/loss/loss.py
mindspore/nn/loss/loss.py
+70
-0
tests/ut/python/nn/test_loss.py
tests/ut/python/nn/test_loss.py
+8
-0
未找到文件。
mindspore/_checkparam.py
浏览文件 @
19c5921c
...
...
@@ -322,6 +322,15 @@ class Validator:
return
arg_value
raise
TypeError
(
f
"
{
msg_prefix
}
`
{
arg_name
}
` must be float."
)
@
staticmethod
def
check_reduce_shape
(
ori_shape
,
shape
,
axis
,
prim_name
):
"""Checks whether shape is ori_shape reduced on axis"""
axis
=
axis
if
isinstance
(
axis
,
Iterable
)
else
(
axis
,)
exp_shape
=
[
ori_shape
[
i
]
for
i
in
range
(
len
(
ori_shape
))
if
i
not
in
axis
]
if
list
(
shape
)
!=
exp_shape
:
raise
ValueError
(
f
'For
{
prim_name
}
,
{
ori_shape
}
reduce on
{
axis
}
should be '
f
'
{
tuple
(
exp_shape
)
}
, but got
{
shape
}
.'
)
class
ParamValidator
:
"""Parameter validator. NOTICE: this class will be replaced by `class Validator`"""
...
...
mindspore/nn/loss/__init__.py
浏览文件 @
19c5921c
...
...
@@ -20,8 +20,9 @@ It shows how well the model works on a dataset and the optimization target which
"""
from
.loss
import
L1Loss
,
MSELoss
,
SmoothL1Loss
,
\
SoftmaxCrossEntropyWithLogits
,
SoftmaxCrossEntropyExpand
SoftmaxCrossEntropyWithLogits
,
SoftmaxCrossEntropyExpand
,
CosineEmbeddingLoss
__all__
=
[
'L1Loss'
,
'MSELoss'
,
'SmoothL1Loss'
,
'SoftmaxCrossEntropyWithLogits'
,
'SoftmaxCrossEntropyExpand'
]
'SoftmaxCrossEntropyExpand'
,
'CosineEmbeddingLoss'
]
mindspore/nn/loss/loss.py
浏览文件 @
19c5921c
...
...
@@ -17,9 +17,11 @@ import mindspore.common.dtype as mstype
from
mindspore.common.tensor
import
Tensor
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
functional
as
F
from
mindspore.ops.primitive
import
constexpr
from
mindspore.nn.cell
import
Cell
from
mindspore._checkparam
import
Validator
as
validator
from
mindspore._checkparam
import
Rel
from
mindspore.ops.composite.multitype_ops
import
_constexpr_utils
as
const_utils
from
...
import
context
...
...
@@ -329,3 +331,71 @@ class SoftmaxCrossEntropyExpand(Cell):
loss
=
self
.
reduce_mean
(
loss
,
-
1
)
return
loss
@
constexpr
def
_check_reduced_shape_valid
(
ori_shape
,
reduced_shape
,
axis
,
cls_name
):
validator
.
check_reduce_shape
(
ori_shape
,
reduced_shape
,
axis
,
cls_name
)
class
CosineEmbeddingLoss
(
_Loss
):
r
"""
Computes the similarity between two tensors using cosine distance.
Given two tensors `x1`, `x2`, and a Tensor label `y` with values 1 or -1:
.. math::
loss(x_1, x_2, y) = \begin{cases}
1-cos(x_1, x_2), & \text{if } y = 1\\
max(0, cos(x_1, x_2)-margin), & \text{if } y = -1\\
\end{cases}
Args:
margin (float): Should be in [-1.0, 1.0]. Default 0.0.
reduction (str): Specifies which reduction to apply to the output. It should be one of
"none", "mean", "sum", meaning no reduction, reduce mean or sum on output, respectively. Default "mean".
Inputs:
- **input_x1** (Tensor) - Input tensor.
- **input_x2** (Tensor) - Its shape and data type should be the same as `input_x1`'s shape and data type.
- **y** (Tensor) - Contains value 1 or -1. Suppose `input_x1` shape is
:math:`(x_1, x_2, x_3,..., x_R)`, then `target` shape should be :math:`(x_1, x_3, x_4, ..., x_R)`.
Outputs:
- **loss** (Tensor) - If `reduction` is "none", its shape is the same as `y`'s shape, loss value otherwise.
Examples:
>>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32)
>>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32)
>>> y = Tensor(np.array([1,-1]), mindspore.int32)
>>> cosine_embedding_loss = P.CosineEmbeddingLoss()
>>> cosine_embedding_loss(x1, x2, target)
[0.0003426671]
"""
def
__init__
(
self
,
margin
=
0.0
,
reduction
=
"mean"
):
super
(
CosineEmbeddingLoss
,
self
).
__init__
(
reduction
)
self
.
reduce_sum
=
P
.
ReduceSum
()
self
.
maximum
=
P
.
Maximum
()
validator
.
check_value_type
(
"margin"
,
margin
,
[
float
],
self
.
cls_name
)
self
.
margin
=
validator
.
check_number_range
(
"margin"
,
margin
,
-
1.0
,
1.0
,
Rel
.
INC_BOTH
,
self
.
cls_name
)
def
construct
(
self
,
x1
,
x2
,
y
):
F
.
same_type_shape
(
x1
,
x2
)
_check_reduced_shape_valid
(
F
.
shape
(
x1
),
F
.
shape
(
y
),
(
1
,),
self
.
cls_name
)
# if target > 0, 1-cosine(x1, x2)
# else, max(0, cosine(x1, x2)-margin)
np_eps
=
const_utils
.
get_np_eps
(
F
.
dtype
(
x1
))
eps
=
F
.
cast
(
np_eps
,
F
.
dtype
(
x1
))
prod_sum
=
self
.
reduce_sum
(
x1
*
x2
,
(
1
,))
square1
=
self
.
reduce_sum
(
F
.
square
(
x1
),
(
1
,))
+
eps
square2
=
self
.
reduce_sum
(
F
.
square
(
x2
),
(
1
,))
+
eps
denom
=
F
.
sqrt
(
square1
*
square2
)
cosine
=
prod_sum
/
denom
pos_value
=
1.0
-
cosine
neg_value
=
self
.
maximum
(
cosine
-
self
.
margin
,
0.0
)
zeros
=
F
.
zeros_like
(
cosine
)
pos_part
=
F
.
select
(
y
==
1
,
pos_value
,
zeros
)
neg_part
=
F
.
select
(
y
==
-
1
,
neg_value
,
zeros
)
output_unreduced
=
pos_part
+
neg_part
return
self
.
get_loss
(
output_unreduced
)
tests/ut/python/nn/test_loss.py
浏览文件 @
19c5921c
...
...
@@ -62,3 +62,11 @@ def test_SoftmaxCrossEntropyExpand():
logits
=
Tensor
(
np
.
random
.
randint
(
0
,
9
,
[
100
,
10
]).
astype
(
np
.
float32
))
labels
=
Tensor
(
np
.
random
.
randint
(
0
,
9
,
[
10
,]).
astype
(
np
.
float32
))
_executor
.
compile
(
loss
,
logits
,
labels
)
def
test_cosine_embedding_loss
():
""" test CosineEmbeddingLoss """
loss
=
nn
.
CosineEmbeddingLoss
()
x1
=
Tensor
(
np
.
array
([[
0.3
,
0.8
],
[
0.4
,
0.3
]]).
astype
(
np
.
float32
))
x2
=
Tensor
(
np
.
array
([[
0.4
,
1.2
],
[
-
0.4
,
-
0.9
]]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
array
([
1
,
-
1
]).
astype
(
np
.
int32
))
loss
(
x1
,
x2
,
label
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录