Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
19762375
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
19762375
编写于
7月 22, 2020
作者:
W
wangnan39@huawei.com
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug in sparse proximal ada grad
上级
e09d50e4
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
13 addition
and
1 deletion
+13
-1
mindspore/nn/learning_rate_schedule.py
mindspore/nn/learning_rate_schedule.py
+12
-0
mindspore/nn/optim/proximal_ada_grad.py
mindspore/nn/optim/proximal_ada_grad.py
+1
-1
未找到文件。
mindspore/nn/learning_rate_schedule.py
浏览文件 @
19762375
...
@@ -24,10 +24,22 @@ from .._checkparam import Rel
...
@@ -24,10 +24,22 @@ from .._checkparam import Rel
class
LearningRateSchedule
(
Cell
):
class
LearningRateSchedule
(
Cell
):
"""Basic class of learning rate schedule."""
def
__init__
(
self
):
def
__init__
(
self
):
super
(
LearningRateSchedule
,
self
).
__init__
()
super
(
LearningRateSchedule
,
self
).
__init__
()
def
construct
(
self
,
global_step
):
def
construct
(
self
,
global_step
):
"""
Defines the computation to get the current learning rate.
This method should be overridden by all subclasses.
Note:
The output should be a Tensor of scalar.
Inputs:
Tensor. The current step number.
"""
raise
NotImplementedError
raise
NotImplementedError
...
...
mindspore/nn/optim/proximal_ada_grad.py
浏览文件 @
19762375
...
@@ -24,7 +24,7 @@ _proximal_ada_grad_opt = C.MultitypeFuncGraph("proximal_ada_grad_opt")
...
@@ -24,7 +24,7 @@ _proximal_ada_grad_opt = C.MultitypeFuncGraph("proximal_ada_grad_opt")
@
_proximal_ada_grad_opt
.
register
(
"Function"
,
"Function"
,
"Tensor"
,
"Tensor"
,
"Tensor"
,
"IndexedSlices"
,
"Tensor"
,
@
_proximal_ada_grad_opt
.
register
(
"Function"
,
"Function"
,
"Tensor"
,
"Tensor"
,
"Tensor"
,
"IndexedSlices"
,
"Tensor"
,
"Tensor"
)
"Tensor"
)
def
_tensor_run_opt_with_sparse
(
opt
,
sparse_opt
,
l
earning_rate
,
l1
,
l2
,
gradient
,
weight
,
accum
):
def
_tensor_run_opt_with_sparse
(
opt
,
sparse_opt
,
l
1
,
l2
,
learning_rate
,
gradient
,
weight
,
accum
):
"""Apply sparse proximal_ada_grad optimizer to the weight parameter."""
"""Apply sparse proximal_ada_grad optimizer to the weight parameter."""
success
=
True
success
=
True
success
=
F
.
depend
(
success
,
sparse_opt
(
weight
,
accum
,
learning_rate
,
l1
,
l2
,
gradient
.
values
(),
gradient
.
indices
()))
success
=
F
.
depend
(
success
,
sparse_opt
(
weight
,
accum
,
learning_rate
,
l1
,
l2
,
gradient
.
values
(),
gradient
.
indices
()))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录