Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
18c94950
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
18c94950
编写于
5月 19, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 19, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1228 Adapt tbe op UnsortedSegmentMin for GE.
Merge pull request !1228 from liuxiao/UnsortedSegmentMin
上级
9b8b699e
cc024bb3
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
121 addition
and
1 deletion
+121
-1
mindspore/ccsrc/operator/ops.cc
mindspore/ccsrc/operator/ops.cc
+1
-0
mindspore/ccsrc/operator/ops.h
mindspore/ccsrc/operator/ops.h
+1
-0
mindspore/ccsrc/transform/convert.cc
mindspore/ccsrc/transform/convert.cc
+1
-0
mindspore/ccsrc/transform/op_declare.cc
mindspore/ccsrc/transform/op_declare.cc
+6
-0
mindspore/ccsrc/transform/op_declare.h
mindspore/ccsrc/transform/op_declare.h
+3
-0
mindspore/ops/_grad/grad_array_ops.py
mindspore/ops/_grad/grad_array_ops.py
+53
-0
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+3
-1
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+48
-0
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+5
-0
未找到文件。
mindspore/ccsrc/operator/ops.cc
浏览文件 @
18c94950
...
@@ -138,6 +138,7 @@ const PrimitivePtr kPrimSize = std::make_shared<Primitive>("Size");
...
@@ -138,6 +138,7 @@ const PrimitivePtr kPrimSize = std::make_shared<Primitive>("Size");
const
PrimitivePtr
kPrimArgMax
=
std
::
make_shared
<
Primitive
>
(
"Argmax"
);
const
PrimitivePtr
kPrimArgMax
=
std
::
make_shared
<
Primitive
>
(
"Argmax"
);
const
PrimitivePtr
kPrimPack
=
std
::
make_shared
<
Primitive
>
(
"Pack"
);
const
PrimitivePtr
kPrimPack
=
std
::
make_shared
<
Primitive
>
(
"Pack"
);
const
PrimitivePtr
kPrimUnsortedSegmentSum
=
std
::
make_shared
<
Primitive
>
(
"UnsortedSegmentSum"
);
const
PrimitivePtr
kPrimUnsortedSegmentSum
=
std
::
make_shared
<
Primitive
>
(
"UnsortedSegmentSum"
);
const
PrimitivePtr
kPrimUnsortedSegmentMin
=
std
::
make_shared
<
Primitive
>
(
"UnsortedSegmentMin"
);
const
PrimitivePtr
kPrimConcatOffset
=
std
::
make_shared
<
Primitive
>
(
"ConcatOffset"
);
const
PrimitivePtr
kPrimConcatOffset
=
std
::
make_shared
<
Primitive
>
(
"ConcatOffset"
);
const
PrimitivePtr
kPrimReshape
=
std
::
make_shared
<
Primitive
>
(
"Reshape"
);
const
PrimitivePtr
kPrimReshape
=
std
::
make_shared
<
Primitive
>
(
"Reshape"
);
const
PrimitivePtr
kPrimTile
=
std
::
make_shared
<
Primitive
>
(
"Tile"
);
const
PrimitivePtr
kPrimTile
=
std
::
make_shared
<
Primitive
>
(
"Tile"
);
...
...
mindspore/ccsrc/operator/ops.h
浏览文件 @
18c94950
...
@@ -143,6 +143,7 @@ extern const PrimitivePtr kPrimSize;
...
@@ -143,6 +143,7 @@ extern const PrimitivePtr kPrimSize;
extern
const
PrimitivePtr
kPrimArgMax
;
extern
const
PrimitivePtr
kPrimArgMax
;
extern
const
PrimitivePtr
kPrimPack
;
extern
const
PrimitivePtr
kPrimPack
;
extern
const
PrimitivePtr
kPrimUnpack
;
extern
const
PrimitivePtr
kPrimUnpack
;
extern
const
PrimitivePtr
kPrimUnsortedSegmentMin
;
extern
const
PrimitivePtr
kPrimUnsortedSegmentSum
;
extern
const
PrimitivePtr
kPrimUnsortedSegmentSum
;
extern
const
PrimitivePtr
kPrimConcatOffset
;
extern
const
PrimitivePtr
kPrimConcatOffset
;
extern
const
PrimitivePtr
kPrimReshape
;
extern
const
PrimitivePtr
kPrimReshape
;
...
...
mindspore/ccsrc/transform/convert.cc
浏览文件 @
18c94950
...
@@ -341,6 +341,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
...
@@ -341,6 +341,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
{
prim
::
kPrimGelu
->
name
(),
ADPT_DESC
(
Gelu
)},
{
prim
::
kPrimGelu
->
name
(),
ADPT_DESC
(
Gelu
)},
{
prim
::
kPrimGeluGrad
->
name
(),
ADPT_DESC
(
GeluGrad
)},
{
prim
::
kPrimGeluGrad
->
name
(),
ADPT_DESC
(
GeluGrad
)},
{
string
(
kNameStridedSlice
),
ADPT_DESC
(
StridedSlice
)},
{
string
(
kNameStridedSlice
),
ADPT_DESC
(
StridedSlice
)},
{
prim
::
kPrimUnsortedSegmentMin
->
name
(),
ADPT_DESC
(
UnsortedSegmentMinD
)},
{
prim
::
kPrimUnsortedSegmentSum
->
name
(),
ADPT_DESC
(
UnsortedSegmentSumD
)},
{
prim
::
kPrimUnsortedSegmentSum
->
name
(),
ADPT_DESC
(
UnsortedSegmentSumD
)},
{
string
(
kNameExpandDims
),
ADPT_DESC
(
ExpandDims
)},
{
string
(
kNameExpandDims
),
ADPT_DESC
(
ExpandDims
)},
{
prim
::
kPrimSqueeze
->
name
(),
ADPT_DESC
(
Squeeze
)},
{
prim
::
kPrimSqueeze
->
name
(),
ADPT_DESC
(
Squeeze
)},
...
...
mindspore/ccsrc/transform/op_declare.cc
浏览文件 @
18c94950
...
@@ -1053,6 +1053,12 @@ INPUT_ATTR_MAP(UnsortedSegmentSumD) = {{3, ATTR_DESC(num_segments, AnyTraits<int
...
@@ -1053,6 +1053,12 @@ INPUT_ATTR_MAP(UnsortedSegmentSumD) = {{3, ATTR_DESC(num_segments, AnyTraits<int
ATTR_MAP
(
UnsortedSegmentSumD
)
=
EMPTY_ATTR_MAP
;
ATTR_MAP
(
UnsortedSegmentSumD
)
=
EMPTY_ATTR_MAP
;
OUTPUT_MAP
(
UnsortedSegmentSumD
)
=
{{
0
,
OUTPUT_DESC
(
y
)}};
OUTPUT_MAP
(
UnsortedSegmentSumD
)
=
{{
0
,
OUTPUT_DESC
(
y
)}};
// UnsortedSegmentMin
INPUT_MAP
(
UnsortedSegmentMinD
)
=
{{
1
,
INPUT_DESC
(
x
)},
{
2
,
INPUT_DESC
(
segment_ids
)}};
INPUT_ATTR_MAP
(
UnsortedSegmentMinD
)
=
{{
3
,
ATTR_DESC
(
num_segments
,
AnyTraits
<
int64_t
>
())}};
ATTR_MAP
(
UnsortedSegmentMinD
)
=
EMPTY_ATTR_MAP
;
OUTPUT_MAP
(
UnsortedSegmentMinD
)
=
{{
0
,
OUTPUT_DESC
(
y
)}};
// ExpandDims
// ExpandDims
INPUT_MAP
(
ExpandDims
)
=
{{
1
,
INPUT_DESC
(
x
)},
{
2
,
INPUT_DESC
(
axis
)}};
INPUT_MAP
(
ExpandDims
)
=
{{
1
,
INPUT_DESC
(
x
)},
{
2
,
INPUT_DESC
(
axis
)}};
ATTR_MAP
(
ExpandDims
)
=
EMPTY_ATTR_MAP
;
ATTR_MAP
(
ExpandDims
)
=
EMPTY_ATTR_MAP
;
...
...
mindspore/ccsrc/transform/op_declare.h
浏览文件 @
18c94950
...
@@ -283,6 +283,9 @@ DECLARE_OP_USE_OUTPUT(StridedSlice)
...
@@ -283,6 +283,9 @@ DECLARE_OP_USE_OUTPUT(StridedSlice)
DECLARE_OP_ADAPTER
(
UnsortedSegmentSumD
)
DECLARE_OP_ADAPTER
(
UnsortedSegmentSumD
)
DECLARE_OP_USE_INPUT_ATTR
(
UnsortedSegmentSumD
)
DECLARE_OP_USE_INPUT_ATTR
(
UnsortedSegmentSumD
)
DECLARE_OP_USE_OUTPUT
(
UnsortedSegmentSumD
)
DECLARE_OP_USE_OUTPUT
(
UnsortedSegmentSumD
)
DECLARE_OP_ADAPTER
(
UnsortedSegmentMinD
)
DECLARE_OP_USE_INPUT_ATTR
(
UnsortedSegmentMinD
)
DECLARE_OP_USE_OUTPUT
(
UnsortedSegmentMinD
)
DECLARE_OP_ADAPTER
(
ExpandDims
)
DECLARE_OP_ADAPTER
(
ExpandDims
)
DECLARE_OP_USE_OUTPUT
(
ExpandDims
)
DECLARE_OP_USE_OUTPUT
(
ExpandDims
)
DECLARE_OP_ADAPTER
(
Squeeze
)
DECLARE_OP_ADAPTER
(
Squeeze
)
...
...
mindspore/ops/_grad/grad_array_ops.py
浏览文件 @
18c94950
...
@@ -22,6 +22,7 @@ from .. import functional as F
...
@@ -22,6 +22,7 @@ from .. import functional as F
from
.grad_base
import
bprop_getters
from
.grad_base
import
bprop_getters
from
..primitive
import
constexpr
from
..primitive
import
constexpr
from
...
import
context
from
...
import
context
from
...common
import
dtype
as
mstype
reduce_sum
=
P
.
ReduceSum
()
reduce_sum
=
P
.
ReduceSum
()
unsorted_segment_sum
=
P
.
UnsortedSegmentSum
()
unsorted_segment_sum
=
P
.
UnsortedSegmentSum
()
...
@@ -29,6 +30,7 @@ transpose = P.Transpose()
...
@@ -29,6 +30,7 @@ transpose = P.Transpose()
shape_op
=
P
.
Shape
()
shape_op
=
P
.
Shape
()
reshape
=
P
.
Reshape
()
reshape
=
P
.
Reshape
()
invert_permutation
=
P
.
InvertPermutation
()
invert_permutation
=
P
.
InvertPermutation
()
logical_and
=
P
.
LogicalAnd
()
@
bprop_getters
.
register
(
P
.
Fill
)
@
bprop_getters
.
register
(
P
.
Fill
)
...
@@ -456,6 +458,57 @@ def get_bprop_diag_part(self):
...
@@ -456,6 +458,57 @@ def get_bprop_diag_part(self):
return
bprop
return
bprop
def
_GatherDropNegatives
(
params
,
ids
,
zero_clipped_indices
=
None
,
is_positive
=
None
):
"""Helper function for unsorted segment ops."""
maximum
=
P
.
Maximum
()
gather
=
P
.
GatherV2
()
greater_equal
=
P
.
GreaterEqual
()
rank
=
P
.
Rank
()
fill
=
P
.
Fill
()
select
=
P
.
Select
()
if
zero_clipped_indices
is
None
:
zero_clipped_indices
=
maximum
(
ids
,
zeros_like
(
ids
))
gathered
=
gather
(
params
,
zero_clipped_indices
,
0
)
if
is_positive
is
None
:
is_positive
=
greater_equal
(
ids
,
0
)
is_positive_shape
=
shape_op
(
is_positive
)
broadcastable_shape
=
is_positive_shape
for
_
in
range
(
rank
(
gathered
)
-
rank
(
is_positive
)):
broadcastable_shape
+=
(
1
,)
is_positive
=
reshape
(
is_positive
,
broadcastable_shape
)
gathered_shape
=
shape_op
(
gathered
)
is_positive
=
logical_and
(
is_positive
,
fill
(
mstype
.
bool_
,
gathered_shape
,
1
))
zero_slice
=
zeros_like
(
gathered
)
return
(
select
(
is_positive
,
gathered
,
zero_slice
),
zero_clipped_indices
,
is_positive
)
@
bprop_getters
.
register
(
P
.
UnsortedSegmentMin
)
def
get_bprop_unsorted_segment_min
(
self
):
"""Generate bprop for UnsortedSegmentMin"""
equal
=
P
.
Equal
()
cast
=
P
.
Cast
()
divide
=
P
.
RealDiv
()
get_dtype
=
P
.
DType
()
select
=
P
.
Select
()
def
bprop
(
x
,
segment_ids
,
num_segments
,
out
,
dout
):
gathered_outputs
,
zero_clipped_indices
,
is_positive
=
_GatherDropNegatives
(
out
,
segment_ids
)
is_selected
=
equal
(
x
,
gathered_outputs
)
is_selected
=
logical_and
(
is_selected
,
is_positive
)
num_selected
=
unsorted_segment_sum
(
cast
(
is_selected
,
get_dtype
(
dout
)),
segment_ids
,
num_segments
)
weighted_grads
=
divide
(
dout
,
num_selected
)
gathered_grads
,
_
,
_
=
_GatherDropNegatives
(
weighted_grads
,
None
,
zero_clipped_indices
,
is_positive
)
zeros
=
zeros_like
(
gathered_grads
)
return
select
(
is_selected
,
gathered_grads
,
zeros
),
zeros_like
(
segment_ids
),
zeros_like
(
num_segments
)
return
bprop
@
bprop_getters
.
register
(
P
.
SpaceToBatch
)
@
bprop_getters
.
register
(
P
.
SpaceToBatch
)
def
get_bprop_space_to_batch
(
self
):
def
get_bprop_space_to_batch
(
self
):
"""Generate bprop for SpaceToBatch"""
"""Generate bprop for SpaceToBatch"""
...
...
mindspore/ops/operations/__init__.py
浏览文件 @
18c94950
...
@@ -28,7 +28,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
...
@@ -28,7 +28,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
ScalarToArray
,
ScalarToTensor
,
ScatterNd
,
ScatterNdUpdate
,
Select
,
ScalarToArray
,
ScalarToTensor
,
ScatterNd
,
ScatterNdUpdate
,
Select
,
Shape
,
Size
,
Slice
,
Split
,
Shape
,
Size
,
Slice
,
Split
,
Squeeze
,
StridedSlice
,
Tile
,
Squeeze
,
StridedSlice
,
Tile
,
Transpose
,
TruncatedNormal
,
TupleToArray
,
Transpose
,
TruncatedNormal
,
TupleToArray
,
UnsortedSegmentMin
,
UnsortedSegmentSum
,
SpaceToDepth
,
DepthToSpace
,
SpaceToBatch
,
BatchToSpace
)
UnsortedSegmentSum
,
SpaceToDepth
,
DepthToSpace
,
SpaceToBatch
,
BatchToSpace
)
from
.comm_ops
import
(
AllGather
,
AllReduce
,
_AlltoAll
,
ReduceScatter
,
Broadcast
,
from
.comm_ops
import
(
AllGather
,
AllReduce
,
_AlltoAll
,
ReduceScatter
,
Broadcast
,
_MirrorOperator
,
ReduceOp
,
_VirtualDataset
,
_MirrorOperator
,
ReduceOp
,
_VirtualDataset
,
...
@@ -96,6 +96,7 @@ __all__ = [
...
@@ -96,6 +96,7 @@ __all__ = [
'MaxPool'
,
'MaxPool'
,
'TopK'
,
'TopK'
,
'Adam'
,
'Adam'
,
'Softplus'
,
'Softmax'
,
'Softmax'
,
'LogSoftmax'
,
'LogSoftmax'
,
'SoftmaxCrossEntropyWithLogits'
,
'SoftmaxCrossEntropyWithLogits'
,
...
@@ -210,6 +211,7 @@ __all__ = [
...
@@ -210,6 +211,7 @@ __all__ = [
'Size'
,
'Size'
,
'DepthwiseConv2dNative'
,
'DepthwiseConv2dNative'
,
'UnsortedSegmentSum'
,
'UnsortedSegmentSum'
,
'UnsortedSegmentMin'
,
"AllGather"
,
"AllGather"
,
"AllReduce"
,
"AllReduce"
,
"ReduceScatter"
,
"ReduceScatter"
,
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
18c94950
...
@@ -1253,6 +1253,54 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
...
@@ -1253,6 +1253,54 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
return
out
return
out
class
UnsortedSegmentMin
(
PrimitiveWithInfer
):
"""
Computes the minimum along segments of a tensor.
If the given segment_ids is negative, the value will be ignored.
Inputs:
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
- **segment_ids** (Tensor) - A `1-D` tensor whose shape is a prefix of `x_shape`.
- **num_segments** (int) - The value spcifies the number of distinct `segment_ids`.
Outputs:
Tensor, Set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`.
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 1]).np.int32)
>>> num_segments = 2
>>> unsorted_segment_min = P.UnsortedSegmentMin()
>>> unsorted_segment_min(input_x, segment_ids, num_segments)
[[1., 2., 3.], [4., 2., 1.]]
"""
@
prim_attr_register
def
__init__
(
self
):
"""init UnsortedSegmentMin"""
self
.
init_prim_io_names
(
inputs
=
[
'x'
,
'segment_ids'
,
'num_segments'
],
outputs
=
[
'y'
])
def
__infer__
(
self
,
x
,
segment_ids
,
num_segments
):
x_type
=
x
[
'dtype'
]
x_shape
=
x
[
'shape'
]
segment_ids_shape
=
segment_ids
[
'shape'
]
valid_type
=
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
int32
]
validator
.
check_tensor_type_same
({
"x"
:
x
[
'dtype'
]},
valid_type
,
self
.
name
)
validator
.
check_tensor_type_same
({
"segment_ids"
:
segment_ids
[
'dtype'
]},
[
mstype
.
int32
],
self
.
name
)
validator
.
check_integer
(
"rank of segment_ids_shape"
,
len
(
segment_ids_shape
),
1
,
Rel
.
EQ
,
self
.
name
)
num_segments_v
=
num_segments
[
'value'
]
validator
.
check_value_type
(
'num_segments'
,
num_segments_v
,
[
int
],
self
.
name
)
validator
.
check_integer
(
"num_segments"
,
num_segments_v
,
0
,
Rel
.
GT
,
self
.
name
)
segment_ids_shape_len
=
len
(
segment_ids_shape
)
out_shape
=
[
num_segments_v
]
out_shape
+=
x_shape
[
segment_ids_shape_len
:]
out
=
{
'shape'
:
out_shape
,
'dtype'
:
x_type
,
'value'
:
None
}
return
out
class
Concat
(
PrimitiveWithInfer
):
class
Concat
(
PrimitiveWithInfer
):
r
"""
r
"""
Concat tensor in specified axis.
Concat tensor in specified axis.
...
...
tests/ut/python/ops/test_ops.py
浏览文件 @
18c94950
...
@@ -778,6 +778,11 @@ test_case_nn_ops = [
...
@@ -778,6 +778,11 @@ test_case_nn_ops = [
'desc_inputs'
:
[[
3
,
2
,
1
,
3
],
Tensor
(
np
.
array
([[
0
,
1
],
[
0
,
1
],
[
0
,
1
]]).
astype
(
np
.
int32
))],
'desc_inputs'
:
[[
3
,
2
,
1
,
3
],
Tensor
(
np
.
array
([[
0
,
1
],
[
0
,
1
],
[
0
,
1
]]).
astype
(
np
.
int32
))],
'desc_bprop'
:
[[
4
,
1
,
3
]],
'desc_bprop'
:
[[
4
,
1
,
3
]],
'skip'
:
[
'backward'
]}),
'skip'
:
[
'backward'
]}),
(
'UnsortedSegmentMin'
,
{
'block'
:
P
.
UnsortedSegmentMin
(),
'desc_const'
:
[
4
],
'desc_inputs'
:
[[
3
,
2
,
1
,
3
],
Tensor
(
np
.
array
([
1
,
2
,
3
]).
astype
(
np
.
int32
))],
'desc_bprop'
:
[[
4
,
2
,
1
,
3
]]}),
(
'DropoutGenMask'
,
{
(
'DropoutGenMask'
,
{
'block'
:
P
.
DropoutGenMask
(),
'block'
:
P
.
DropoutGenMask
(),
'desc_const'
:
[(
2
,
2
),
Tensor
(
0.5
,
mstype
.
float32
)],
'desc_const'
:
[(
2
,
2
),
Tensor
(
0.5
,
mstype
.
float32
)],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录