提交 17cecf2c 编写于 作者: T Tinazhang

Added TCs to RandomCrop and RandomCropAndResize and modified visalize() calling

上级 6cbde2b3
......@@ -13,12 +13,11 @@
# limitations under the License.
# ==============================================================================
import numpy as np
from util import diff_mse, visualize, save_and_check_md5
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, visualize, save_and_check_md5
GENERATE_GOLDEN = False
......@@ -46,12 +45,14 @@ def test_HWC2CHW(plot=False):
image_transposed = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_transposed.append(item1["image"].copy())
image.append(item2["image"].copy())
transposed_item = item1["image"].copy()
original_item = item2["image"].copy()
image_transposed.append(transposed_item.transpose(1, 2, 0))
image.append(original_item)
# check if the shape of data is transposed correctly
# transpose the original image from shape (H,W,C) to (C,H,W)
mse = diff_mse(item1['image'], item2['image'].transpose(2, 0, 1))
mse = diff_mse(transposed_item, original_item.transpose(2, 0, 1))
assert mse == 0
if plot:
visualize(image, image_transposed)
......@@ -108,15 +109,13 @@ def test_HWC2CHW_comp(plot=False):
mse = diff_mse(py_image, c_image)
# Note: The images aren't exactly the same due to rounding error
assert mse < 0.001
image_c_transposed.append(item1["image"].copy())
image_py_transposed.append(item2["image"].copy())
image_c_transposed.append(c_image.transpose(1, 2, 0))
image_py_transposed.append(py_image.transpose(1, 2, 0))
if plot:
visualize(image_c_transposed, image_py_transposed)
if __name__ == '__main__':
test_HWC2CHW()
test_HWC2CHW(True)
test_HWC2CHW_md5()
test_HWC2CHW_comp()
test_HWC2CHW_comp(True)
......@@ -13,12 +13,11 @@
# limitations under the License.
# ==============================================================================
import numpy as np
from util import diff_mse, visualize, save_and_check_md5
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, visualize, save_and_check_md5
GENERATE_GOLDEN = False
......@@ -101,8 +100,8 @@ def test_center_crop_comp(height=375, width=375, plot=False):
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# Note: The images aren't exactly the same due to rounding error
assert diff_mse(py_image, c_image) < 0.001
image_cropped.append(item1["image"].copy())
image.append(item2["image"].copy())
image_cropped.append(c_image.copy())
image.append(py_image.copy())
if plot:
visualize(image, image_cropped)
......@@ -141,9 +140,9 @@ def test_crop_grayscale(height=375, width=375):
if __name__ == "__main__":
test_center_crop_op(600, 600)
test_center_crop_op(600, 600, True)
test_center_crop_op(300, 600)
test_center_crop_op(600, 300)
test_center_crop_md5()
test_center_crop_comp()
test_center_crop_comp(True)
test_crop_grayscale()
......@@ -13,37 +13,24 @@
# limitations under the License.
# ==============================================================================
"""
Testing RandomCropAndResize op in DE
Testing RandomCrop op in DE
"""
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
import mindspore.dataset.transforms.vision.utils as mode
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from util import save_and_check_md5, visualize
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def visualize(a, mse, original):
"""
visualizes the image using DE op and Numpy op
"""
plt.subplot(141)
plt.imshow(original)
plt.title("Original image")
plt.subplot(142)
plt.imshow(a)
plt.title("DE random_crop image")
GENERATE_GOLDEN = False
plt.subplot(143)
plt.imshow(a - original)
plt.title("Difference image, mse : {}".format(mse))
plt.show()
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_crop_op():
def test_random_crop_op(plot=False):
"""
Test RandomCrop Op
"""
......@@ -51,8 +38,9 @@ def test_random_crop_op():
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
decode_op = vision.Decode()
random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
decode_op = c_vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
......@@ -60,10 +48,454 @@ def test_random_crop_op():
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
image_cropped = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = item1["image"]
image2 = item2["image"]
image_cropped.append(image1)
image.append(image2)
if plot:
visualize(image, image_cropped)
def test_random_crop_01_c():
"""
Test RandomCrop op with c_transforms: size is a single integer, expected to pass
"""
logger.info("test_random_crop_01_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: If size is an int, a square crop of size (size, size) is returned.
random_crop_op = c_vision.RandomCrop(512)
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_01_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_01_py():
"""
Test RandomCrop op with py_transforms: size is a single integer, expected to pass
"""
logger.info("test_random_crop_01_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: If size is an int, a square crop of size (size, size) is returned.
transforms = [
py_vision.Decode(),
py_vision.RandomCrop(512),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_01_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_02_c():
"""
Test RandomCrop op with c_transforms: size is a list/tuple with length 2, expected to pass
"""
logger.info("test_random_crop_02_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: If size is a sequence of length 2, it should be (height, width).
random_crop_op = c_vision.RandomCrop([512, 375])
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_02_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_02_py():
"""
Test RandomCrop op with py_transforms: size is a list/tuple with length 2, expected to pass
"""
logger.info("test_random_crop_02_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: If size is a sequence of length 2, it should be (height, width).
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([512, 375]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_02_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_03_c():
"""
Test RandomCrop op with c_transforms: input image size == crop size, expected to pass
"""
logger.info("test_random_crop_03_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
random_crop_op = c_vision.RandomCrop([2268, 4032])
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_03_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_03_py():
"""
Test RandomCrop op with py_transforms: input image size == crop size, expected to pass
"""
logger.info("test_random_crop_03_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([2268, 4032]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_03_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_04_c():
"""
Test RandomCrop op with c_transforms: input image size < crop size, expected to fail
"""
logger.info("test_random_crop_04_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
random_crop_op = c_vision.RandomCrop([2268, 4033])
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
def test_random_crop_04_py():
"""
Test RandomCrop op with py_transforms:
input image size < crop size, expected to fail
"""
logger.info("test_random_crop_04_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([2268, 4033]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
image_list = []
for item in data.create_dict_iterator():
image = (item["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_list.append(image.shape)
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
def test_random_crop_05_c():
"""
Test RandomCrop op with c_transforms:
input image size < crop size but pad_if_needed is enabled,
expected to pass
"""
logger.info("test_random_crop_05_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
random_crop_op = c_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True)
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_05_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_05_py():
"""
Test RandomCrop op with py_transforms:
input image size < crop size but pad_if_needed is enabled,
expected to pass
"""
logger.info("test_random_crop_05_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The size of the image is 4032*2268
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_05_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_06_c():
"""
Test RandomCrop op with c_transforms:
invalid size, expected to raise TypeError
"""
logger.info("test_random_crop_06_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: if size is neither an int nor a list of length 2, an exception will raise
random_crop_op = c_vision.RandomCrop([512, 512, 375])
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Size" in str(e)
def test_random_crop_06_py():
"""
Test RandomCrop op with py_transforms:
invalid size, expected to raise TypeError
"""
logger.info("test_random_crop_06_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: if size is neither an int nor a list of length 2, an exception will raise
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([512, 512, 375]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
image_list = []
for item in data.create_dict_iterator():
image = (item["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_list.append(image.shape)
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Size" in str(e)
def test_random_crop_07_c():
"""
Test RandomCrop op with c_transforms:
padding_mode is Border.CONSTANT and fill_value is 255 (White),
expected to pass
"""
logger.info("test_random_crop_07_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255))
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_07_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_07_py():
"""
Test RandomCrop op with py_transforms:
padding_mode is Border.CONSTANT and fill_value is 255 (White),
expected to pass
"""
logger.info("test_random_crop_07_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
transforms = [
py_vision.Decode(),
py_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_07_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_08_c():
"""
Test RandomCrop op with c_transforms: padding_mode is Border.EDGE,
expected to pass
"""
logger.info("test_random_crop_08_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The padding_mode is Border.EDGE.
random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
decode_op = c_vision.Decode()
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_op)
filename = "random_crop_08_c_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_08_py():
"""
Test RandomCrop op with py_transforms: padding_mode is Border.EDGE,
expected to pass
"""
logger.info("test_random_crop_08_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Note: The padding_mode is Border.EDGE.
transforms = [
py_vision.Decode(),
py_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
filename = "random_crop_08_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_random_crop_09():
"""
Test RandomCrop op: invalid type of input image (not PIL), expected to raise TypeError
"""
logger.info("test_random_crop_09")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
# Note: if input is not PIL image, TypeError will raise
py_vision.RandomCrop(512)
]
transform = py_vision.ComposeOp(transforms)
try:
data = data.map(input_columns=["image"], operations=transform())
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except BaseException as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "should be PIL Image" in str(e)
def test_random_crop_comp(plot=False):
"""
Test RandomCrop and compare between python and c image augmentation
"""
logger.info("Test RandomCrop with c_transform and py_transform comparison")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
cropped_size = 512
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_op = c_vision.RandomCrop(cropped_size)
decode_op = c_vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomCrop(cropped_size),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
image_c_cropped = []
image_py_cropped = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_c_cropped.append(c_image)
image_py_cropped.append(py_image)
if plot:
visualize(image_c_cropped, image_py_cropped)
if __name__ == "__main__":
test_random_crop_op()
test_random_crop_01_c()
test_random_crop_02_c()
test_random_crop_03_c()
test_random_crop_04_c()
test_random_crop_05_c()
test_random_crop_06_c()
test_random_crop_07_c()
test_random_crop_08_c()
test_random_crop_01_py()
test_random_crop_02_py()
test_random_crop_03_py()
test_random_crop_04_py()
test_random_crop_05_py()
test_random_crop_06_py()
test_random_crop_07_py()
test_random_crop_08_py()
test_random_crop_09()
test_random_crop_op(True)
test_random_crop_comp(True)
......@@ -16,36 +16,21 @@
Testing RandomCropAndResize op in DE
"""
import cv2
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
import mindspore.dataset.transforms.vision.utils as mode
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from util import diff_mse, save_and_check_md5, visualize
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def visualize(a, mse, original):
"""
visualizes the image using DE op and Numpy op
"""
plt.subplot(141)
plt.imshow(original)
plt.title("Original image")
plt.subplot(142)
plt.imshow(a)
plt.title("DE random_crop_and_resize image")
plt.subplot(143)
plt.imshow(a - original)
plt.title("Difference image, mse : {}".format(mse))
plt.show()
def test_random_crop_and_resize_op():
def test_random_crop_and_resize_op(plot=False):
"""
Test RandomCropAndResize op
"""
......@@ -53,30 +38,268 @@ def test_random_crop_and_resize_op():
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
random_crop_and_resize_op = vision.RandomResizedCrop((256, 512), (1, 1), (0.5, 0.5))
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (1, 1), (0.5, 0.5))
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
num_iter = 0
crop_and_resize_images = []
original_images = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
if num_iter > 0:
break
crop_and_resize = item1["image"]
original = item2["image"]
# Note: resize the original image with the same size as the one applied RandomResizedCrop()
original = cv2.resize(original, (512, 256))
diff = crop_and_resize - original
mse = np.sum(np.power(diff, 2))
mse = diff_mse(crop_and_resize, original)
assert mse == 0
logger.info("random_crop_and_resize_op_{}, mse: {}".format(num_iter + 1, mse))
# Uncomment below line if you want to visualize images
# visualize(crop_and_resize, mse, original)
num_iter += 1
crop_and_resize_images.append(crop_and_resize)
original_images.append(original)
if plot:
visualize(original_images, crop_and_resize_images)
def test_random_crop_and_resize_01():
"""
Test RandomCropAndResize with md5 check, expected to pass
"""
logger.info("test_random_crop_and_resize_01")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (0.5, 1), (0.5, 1))
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomResizedCrop((256, 512), (0.5, 1), (0.5, 1)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
filename1 = "random_crop_and_resize_01_c_result.npz"
filename2 = "random_crop_and_resize_01_py_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_02():
"""
Test RandomCropAndResize with md5 check:Image interpolation mode is Inter.NEAREST,
expected to pass
"""
logger.info("test_random_crop_and_resize_02")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), interpolation=mode.Inter.NEAREST)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomResizedCrop((256, 512), interpolation=mode.Inter.NEAREST),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
filename1 = "random_crop_and_resize_02_c_result.npz"
filename2 = "random_crop_and_resize_02_py_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_03():
"""
Test RandomCropAndResize with md5 check: max_attempts is 1, expected to pass
"""
logger.info("test_random_crop_and_resize_03")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), max_attempts=1)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomResizedCrop((256, 512), max_attempts=1),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
filename1 = "random_crop_and_resize_03_c_result.npz"
filename2 = "random_crop_and_resize_03_py_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_04_c():
"""
Test RandomCropAndResize with c_tranforms: invalid range of scale (max<min),
expected to raise ValueError
"""
logger.info("test_random_crop_and_resize_04_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
# If input range of scale is not in the order of (min, max), ValueError will be raised.
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (1, 0.5), (0.5, 0.5))
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_and_resize_op)
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_04_py():
"""
Test RandomCropAndResize with py_transforms: invalid range of scale (max<min),
expected to raise ValueError
"""
logger.info("test_random_crop_and_resize_04_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
# If input range of scale is not in the order of (min, max), ValueError will be raised.
py_vision.RandomResizedCrop((256, 512), (1, 0.5), (0.5, 0.5)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_05_c():
"""
Test RandomCropAndResize with c_transforms: invalid range of ratio (max<min),
expected to raise ValueError
"""
logger.info("test_random_crop_and_resize_05_c")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (1, 1), (1, 0.5))
# If input range of ratio is not in the order of (min, max), ValueError will be raised.
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=random_crop_and_resize_op)
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_05_py():
"""
Test RandomCropAndResize with py_transforms: invalid range of ratio (max<min),
expected to raise ValueError
"""
logger.info("test_random_crop_and_resize_05_py")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
try:
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
# If input range of ratio is not in the order of (min, max), ValueError will be raised.
py_vision.RandomResizedCrop((256, 512), (1, 1), (1, 0.5)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
image_list = []
for item in data.create_dict_iterator():
image = item["image"]
image_list.append(image.shape)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_comp(plot=False):
"""
Test RandomCropAndResize and compare between python and c image augmentation
"""
logger.info("test_random_crop_and_resize_comp")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop(512, (1, 1), (0.5, 0.5))
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomResizedCrop(512, (1, 1), (0.5, 0.5)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
image_c_cropped = []
image_py_cropped = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_c_cropped.append(c_image)
image_py_cropped.append(py_image)
if plot:
visualize(image_c_cropped, image_py_cropped)
if __name__ == "__main__":
test_random_crop_and_resize_op()
test_random_crop_and_resize_op(True)
test_random_crop_and_resize_01()
test_random_crop_and_resize_02()
test_random_crop_and_resize_03()
test_random_crop_and_resize_04_c()
test_random_crop_and_resize_04_py()
test_random_crop_and_resize_05_c()
test_random_crop_and_resize_05_py()
test_random_crop_and_resize_comp(True)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册