Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
15ccc5c5
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15ccc5c5
编写于
4月 23, 2020
作者:
W
wukesong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify lenet&alexnet
上级
b48d663c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
10 addition
and
12 deletion
+10
-12
example/alexnet_cifar10/README.md
example/alexnet_cifar10/README.md
+4
-5
example/lenet_mnist/README.md
example/lenet_mnist/README.md
+6
-7
未找到文件。
example/alexnet_cifar10/README.md
浏览文件 @
15ccc5c5
...
...
@@ -25,7 +25,7 @@ This is the simple tutorial for training AlexNet in MindSpore.
python
train
.
py
--
data_path
cifar
-
10
-
batches
-
bin
```
You
can get loss with each step similar to this
:
You
will get the loss value of each step as following
:
```
bash
epoch: 1 step: 1, loss is 2.2791853
...
...
@@ -36,17 +36,16 @@ epoch: 1 step: 1538, loss is 1.0221305
...
```
Then,
test
AlexNet according to network model
Then,
evaluate
AlexNet according to network model
```
python
#
test
AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
#
evaluate
AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
python
eval
.
py
--
data_path
cifar
-
10
-
verify
-
bin
--
mode
test
--
ckpt_path
checkpoint_alexnet
-
1_1562.
ckpt
```
## Note
There are some optional argument
s:
Here are some optional parameter
s:
```
bash
-h
,
--help
show this
help
message and
exit
--device_target
{
Ascend,GPU
}
device where the code will be implemented
(
default: Ascend
)
--data_path
DATA_PATH
...
...
example/lenet_mnist/README.md
浏览文件 @
15ccc5c5
...
...
@@ -19,8 +19,8 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
│ t10k-labels.idx1-ubyte
│
└─train
train-images.idx3-ubyte
train-labels.idx1-ubyte
train-images.idx3-ubyte
train-labels.idx1-ubyte
```
## Running the example
...
...
@@ -30,7 +30,7 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
python
train
.
py
--
data_path
MNIST_Data
```
You
can get loss with each step similar to this
:
You
will get the loss value of each step as following
:
```
bash
epoch: 1 step: 1, loss is 2.3040335
...
...
@@ -41,17 +41,16 @@ epoch: 1 step: 1741, loss is 0.05018193
...
```
Then,
test
LeNet according to network model
Then,
evaluate
LeNet according to network model
```
python
#
test
LeNet, after 1 epoch training, the accuracy is up to 96.5%
#
evaluate
LeNet, after 1 epoch training, the accuracy is up to 96.5%
python
eval
.
py
--
data_path
MNIST_Data
--
mode
test
--
ckpt_path
checkpoint_lenet
-
1_1875.
ckpt
```
## Note
There are some optional argument
s:
Here are some optional parameter
s:
```
bash
-h
,
--help
show this
help
message and
exit
--device_target
{
Ascend,GPU,CPU
}
device where the code will be implemented
(
default: Ascend
)
--data_path
DATA_PATH
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录