Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
158495d4
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
158495d4
编写于
6月 08, 2020
作者:
H
hongxing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hccl patch + update ConstructNodes + support Softmax
上级
2031710d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
108 addition
and
31 deletion
+108
-31
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
.../parallel/auto_parallel/rec_core/rec_generate_strategy.cc
+93
-25
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
...c/parallel/auto_parallel/rec_core/rec_generate_strategy.h
+1
-1
mindspore/ccsrc/parallel/step_auto_parallel.cc
mindspore/ccsrc/parallel/step_auto_parallel.cc
+14
-5
未找到文件。
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
浏览文件 @
158495d4
...
...
@@ -37,7 +37,10 @@ void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::share
MS_EXCEPTION_IF_NULL
(
index_list
);
GeneratePartitionedOperatorStrategy
(
graph
,
ops
,
index_list
);
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
(
new
std
::
vector
<
size_t
>
);
GenerateEliminatedOperatorStrategyForward
(
graph
,
ops
,
eli_list
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
for
(
size_t
i
=
0
;
i
<
eli_list
->
size
();
i
++
)
{
no_stra_op_list
->
push_back
(
eli_list
->
at
(
i
)[
0
]);
}
GenerateEliminatedOperatorStrategyForward
(
graph
,
ops
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
GenerateEliminatedOperatorStrategyBackward
(
ops
,
input_tensor_names
,
no_stra_op_list
);
GenerateRemainingOperatorStrategy
(
graph
,
ops
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
}
...
...
@@ -49,6 +52,58 @@ std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &gr
auto
attrs
=
ops
[
iter_ops
]
->
attrs
();
bool
transpose_a
=
attrs
[
TRANSPOSE_A
]
->
cast
<
BoolImmPtr
>
()
->
value
();
bool
transpose_b
=
attrs
[
TRANSPOSE_B
]
->
cast
<
BoolImmPtr
>
()
->
value
();
// HCCL does not support multi-dimension partition, and the hardware does not support excessive
// number of EVENT, so we temporarily disable matmul's multi-dimension partition function.
auto
max_cut
=
1.0
/
g_device_manager
->
DeviceNum
();
if
(
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
0
].
tensor_str
.
str_h
!=
max_cut
&&
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
1
].
tensor_str
.
str_w
!=
max_cut
)
{
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
0
].
tensor_str
.
str_h
=
1.0
;
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
0
].
tensor_str
.
str_w
=
1.0
;
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
1
].
tensor_str
.
str_h
=
1.0
;
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
1
].
tensor_str
.
str_w
=
1.0
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_h
=
1.0
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_w
=
1.0
;
auto
shape_1
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
0
].
shape
()[
0
];
if
(
transpose_a
)
{
shape_1
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
0
].
shape
()[
1
];
}
auto
shape_4
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
1
].
shape
()[
1
];
if
(
transpose_b
)
{
shape_4
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
1
].
shape
()[
0
];
}
bool
already_cut
=
false
;
if
(
shape_1
>=
shape_4
)
{
if
(
shape_1
%
g_device_manager
->
DeviceNum
()
==
0
)
{
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
0
].
tensor_str
.
str_h
=
max_cut
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_h
=
max_cut
;
already_cut
=
true
;
}
if
(
!
already_cut
&&
shape_4
%
g_device_manager
->
DeviceNum
()
==
0
)
{
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
1
].
tensor_str
.
str_w
=
max_cut
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_w
=
max_cut
;
already_cut
=
true
;
}
}
else
{
if
(
shape_4
%
g_device_manager
->
DeviceNum
()
==
0
)
{
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
1
].
tensor_str
.
str_w
=
max_cut
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_w
=
max_cut
;
already_cut
=
true
;
}
if
(
!
already_cut
&&
shape_1
%
g_device_manager
->
DeviceNum
()
==
0
)
{
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
0
].
tensor_str
.
str_h
=
max_cut
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_h
=
max_cut
;
already_cut
=
true
;
}
}
if
(
!
already_cut
)
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: MatMul's shape is invalid."
;
}
}
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
std
::
vector
<
int32_t
>
s
;
if
(
transpose_a
&&
(
iter_op_inputs
==
0
))
{
...
...
@@ -401,6 +456,11 @@ std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::share
return
s_Reduce
;
}
std
::
vector
<
int32_t
>
ModifyStrategyIfSoftmaxIncoming
(
std
::
vector
<
int32_t
>
s
)
{
s
.
pop_back
();
return
s
;
}
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
incoming_op_index
)
{
std
::
vector
<
int32_t
>
s
;
...
...
@@ -414,6 +474,9 @@ std::vector<int32_t> CopyIncomingOperatorInputStrategy(const std::vector<std::sh
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_MIN
||
ops
[
incoming_op_index
]
->
type
()
==
REDUCE_MEAN
)
{
s
=
ModifyStrategyIfReduceIncoming
(
ops
,
incoming_op_index
,
s
);
}
if
(
ops
[
incoming_op_index
]
->
type
()
==
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS
)
{
s
=
ModifyStrategyIfSoftmaxIncoming
(
s
);
}
}
return
s
;
}
...
...
@@ -466,12 +529,16 @@ std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vect
void
GenerateEliminatedOperatorStrategyForward
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
for
(
size_t
eli_index
=
eli_list
->
size
();
eli_index
>
0
;
eli_index
--
)
{
size_t
iter_ops
=
eli_list
->
at
(
eli_index
-
1
)[
0
];
if
(
no_stra_op_list
->
size
()
==
0
)
{
return
;
}
std
::
vector
<
size_t
>
no_stra_op_list_bis
;
for
(
size_t
iter_list
=
no_stra_op_list
->
size
();
iter_list
>
0
;
iter_list
--
)
{
size_t
iter_ops
=
no_stra_op_list
->
at
(
iter_list
-
1
);
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
;
size_t
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
...
...
@@ -485,7 +552,7 @@ void GenerateEliminatedOperatorStrategyForward(const std::shared_ptr<Graph> grap
}
if
(
s
.
size
()
==
0
)
{
no_stra_op_list
->
push_back
(
iter_ops
);
no_stra_op_list
_bis
.
push_back
(
iter_ops
);
}
else
{
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
}
...
...
@@ -493,6 +560,11 @@ void GenerateEliminatedOperatorStrategyForward(const std::shared_ptr<Graph> grap
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
no_stra_op_list
->
clear
();
for
(
size_t
i
=
0
;
i
<
no_stra_op_list_bis
.
size
();
i
++
)
{
no_stra_op_list
->
push_back
(
no_stra_op_list_bis
[
i
]);
}
}
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
...
...
@@ -598,31 +670,27 @@ void GenerateRemainingOperatorStrategy(const std::shared_ptr<Graph> graph,
return
;
}
for
(
size_t
iter_list
=
no_stra_op_list
->
size
();
iter_list
>
0
;
iter_list
--
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
-
1
);
size_t
no_stra_op_list_size
;
do
{
no_stra_op_list_size
=
no_stra_op_list
->
size
();
GenerateEliminatedOperatorStrategyForward
(
graph
,
ops
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
GenerateEliminatedOperatorStrategyBackward
(
ops
,
input_tensor_names
,
no_stra_op_list
);
}
while
(
no_stra_op_list_size
>
no_stra_op_list
->
size
());
for
(
size_t
iter_list
=
0
;
iter_list
<
no_stra_op_list
->
size
();
iter_list
++
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
);
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
;
size_t
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
if
(
incoming_op_index
!=
SIZE_MAX
)
{
auto
iter_graph
=
index_list
->
at
(
incoming_op_index
);
if
(
iter_graph
!=
SIZE_MAX
)
{
s
=
CopyIncomingOperatorOutputStrategy
(
graph
,
ops
,
iter_ops
,
iter_graph
);
}
else
{
s
=
CopyIncomingOperatorInputStrategy
(
ops
,
iter_ops
,
incoming_op_index
);
}
}
if
(
s
.
size
()
==
0
)
{
size_t
max_dim_num
=
0
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
()
>
max_dim_num
)
{
max_dim_num
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
}
}
for
(
size_t
i
=
0
;
i
<
max_dim_num
;
i
++
)
{
s
.
push_back
(
1
);
size_t
max_dim_num
=
0
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
()
>
max_dim_num
)
{
max_dim_num
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
}
}
for
(
size_t
i
=
0
;
i
<
max_dim_num
;
i
++
)
{
s
.
push_back
(
1
);
}
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
浏览文件 @
158495d4
...
...
@@ -64,13 +64,13 @@ std::vector<int32_t> ModifyStrategyIfSqueezeIncoming(const std::vector<std::shar
std
::
vector
<
int32_t
>
GetDimList
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
ModifyStrategyIfSoftmaxIncoming
(
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
incoming_op_index
);
std
::
vector
<
std
::
vector
<
int32_t
>>
GenerateStrategiesFromStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
void
GenerateEliminatedOperatorStrategyForward
(
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
std
::
vector
<
size_t
>>>
eli_list
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
...
...
mindspore/ccsrc/parallel/step_auto_parallel.cc
浏览文件 @
158495d4
...
...
@@ -1156,13 +1156,22 @@ std::vector<std::vector<std::string>> RecInputTensorNames(const std::map<std::st
}
Status
ParallelStrategyRecSearch
(
const
std
::
vector
<
AnfNodePtr
>
&
all_nodes
,
const
FuncGraphPtr
&
root
)
{
if
(
ConstructCostGraphNodesByUniqueId
(
all_nodes
,
root
)
==
SUCCESS
)
{
MS_LOG
(
INFO
)
<<
"Constructing nodes for cost graph succeeded. There are "
<<
entire_costgraph
->
GetOperators
().
size
()
<<
" operators."
;
if
(
CostModelContext
::
GetInstance
()
->
is_multi_subgraphs
())
{
if
(
ConstructCostGraphNodesByUniqueIdTC
(
all_nodes
,
root
)
==
SUCCESS
)
{
MS_LOG
(
INFO
)
<<
"Constructing nodes for cost graph succeeded. There are "
<<
entire_costgraph
->
GetOperators
().
size
()
<<
" operators."
;
}
else
{
MS_LOG
(
EXCEPTION
)
<<
"Constructing nodes for cost graph failed."
;
}
}
else
{
MS_LOG
(
ERROR
)
<<
"Constructing nodes for cost graph failed."
;
return
FAILED
;
if
(
ConstructCostGraphNodesByUniqueId
(
all_nodes
,
root
)
==
SUCCESS
)
{
MS_LOG
(
INFO
)
<<
"Constructing nodes for cost graph succeeded. There are "
<<
entire_costgraph
->
GetOperators
().
size
()
<<
" operators."
;
}
else
{
MS_LOG
(
EXCEPTION
)
<<
"Constructing nodes for cost graph failed."
;
}
}
ReshapeCostCompute
(
all_nodes
);
auto
ops
=
entire_costgraph
->
GetOperators
();
std
::
vector
<
std
::
vector
<
std
::
string
>>
input_tensor_names
=
entire_costgraph
->
get_inputs_tensor_name_list
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录