Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
157329ef
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
157329ef
编写于
5月 14, 2020
作者:
W
wukesong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dy-lr in lenet alexnet
上级
e42631c1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
59 addition
and
11 deletion
+59
-11
example/alexnet_cifar10/generator_lr.py
example/alexnet_cifar10/generator_lr.py
+44
-0
example/alexnet_cifar10/train.py
example/alexnet_cifar10/train.py
+8
-5
example/lenet_mnist/train.py
example/lenet_mnist/train.py
+7
-6
未找到文件。
example/alexnet_cifar10/generator_lr.py
0 → 100755
浏览文件 @
157329ef
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""learning rate generator"""
import
numpy
as
np
def
get_lr
(
current_step
,
lr_max
,
total_epochs
,
steps_per_epoch
):
"""
generate learning rate array
Args:
current_step(int): current steps of the training
lr_max(float): max learning rate
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step
=
[]
total_steps
=
steps_per_epoch
*
total_epochs
decay_epoch_index
=
[
0.8
*
total_steps
]
for
i
in
range
(
total_steps
):
if
i
<
decay_epoch_index
[
0
]:
lr
=
lr_max
else
:
lr
=
lr_max
*
0.1
lr_each_step
.
append
(
lr
)
lr_each_step
=
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
learning_rate
=
lr_each_step
[
current_step
:]
return
learning_rate
example/alexnet_cifar10/train.py
浏览文件 @
157329ef
...
@@ -21,12 +21,14 @@ python train.py --data_path /YourDataPath
...
@@ -21,12 +21,14 @@ python train.py --data_path /YourDataPath
import
argparse
import
argparse
from
config
import
alexnet_cfg
as
cfg
from
config
import
alexnet_cfg
as
cfg
from
dataset
import
create_dataset
from
dataset
import
create_dataset
from
generator_lr
import
get_lr
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore
import
context
from
mindspore
import
Tensor
from
mindspore.train
import
Model
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.model_zoo.alexnet
import
AlexNet
from
mindspore.model_zoo.alexnet
import
AlexNet
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
@@ -43,16 +45,17 @@ if __name__ == "__main__":
...
@@ -43,16 +45,17 @@ if __name__ == "__main__":
network
=
AlexNet
(
cfg
.
num_classes
)
network
=
AlexNet
(
cfg
.
num_classes
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
learning_rate
,
cfg
.
momentum
)
lr
=
Tensor
(
get_lr
(
0
,
cfg
.
learning_rate
,
cfg
.
epoch_size
,
cfg
.
save_checkpoint_steps
))
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
lr
,
cfg
.
momentum
)
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
print
(
"============== Starting Training =============="
)
print
(
"============== Starting Training =============="
)
ds_train
=
create_dataset
(
args
.
data_path
,
ds_train
=
create_dataset
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
batch_size
,
cfg
.
epoch_size
,
cfg
.
epoch_size
)
"train"
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
()
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_alexnet"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_alexnet"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
model
.
train
(
cfg
.
epoch_size
,
ds_train
,
callbacks
=
[
ckpoint_cb
,
LossMonitor
()],
model
.
train
(
cfg
.
epoch_size
,
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
LossMonitor
()],
dataset_sink_mode
=
args
.
dataset_sink_mode
)
dataset_sink_mode
=
args
.
dataset_sink_mode
)
example/lenet_mnist/train.py
浏览文件 @
157329ef
...
@@ -25,7 +25,7 @@ from dataset import create_dataset
...
@@ -25,7 +25,7 @@ from dataset import create_dataset
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore.train
import
Model
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.metrics
import
Accuracy
...
@@ -40,19 +40,20 @@ if __name__ == "__main__":
...
@@ -40,19 +40,20 @@ if __name__ == "__main__":
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
,
enable_mem_reuse
=
False
)
ds_train
=
create_dataset
(
os
.
path
.
join
(
args
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
network
=
LeNet5
(
cfg
.
num_classes
)
network
=
LeNet5
(
cfg
.
num_classes
)
net_loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
net_loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
net_opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
lr
,
cfg
.
momentum
)
net_opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
lr
,
cfg
.
momentum
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
())
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_lenet"
,
config
=
config_ck
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_lenet"
,
config
=
config_ck
)
model
=
Model
(
network
,
net_loss
,
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
model
=
Model
(
network
,
net_loss
,
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
ds_train
=
create_dataset
(
os
.
path
.
join
(
args
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
print
(
"============== Starting Training =============="
)
print
(
"============== Starting Training =============="
)
model
.
train
(
cfg
[
'epoch_size'
],
ds_train
,
callbacks
=
[
ckpoint_cb
,
LossMonitor
()],
model
.
train
(
cfg
[
'epoch_size'
],
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
LossMonitor
()],
dataset_sink_mode
=
args
.
dataset_sink_mode
)
dataset_sink_mode
=
args
.
dataset_sink_mode
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录