Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
153ed6f6
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
153ed6f6
编写于
8月 20, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 20, 2020
浏览文件
操作
浏览文件
下载
差异文件
!4857 Deepfm, add 8p learing rate value to README.md
Merge pull request !4857 from tom_chen/deepfm_lr
上级
b4925d3e
447be493
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
19 addition
and
6 deletion
+19
-6
model_zoo/official/recommend/deepfm/README.md
model_zoo/official/recommend/deepfm/README.md
+19
-6
未找到文件。
model_zoo/official/recommend/deepfm/README.md
浏览文件 @
153ed6f6
...
...
@@ -28,6 +28,7 @@ The overall network architecture of DeepFM is show below:
├── README.md
├── scripts
│ ├──run_distribute_train.sh
│ ├──run_distribute_train_gpu.sh
│ ├──run_standalone_train.sh
│ ├──run_eval.sh
├── src
...
...
@@ -44,18 +45,21 @@ The overall network architecture of DeepFM is show below:
### Usage
-
sh run_train.sh [DEVICE_NUM] [DATASET_PATH] [RANK_TABLE_FILE]
-
python train.py --dataset_path [DATASET_PATH]
-
sh run_distribute_train.sh [DEVICE_NUM] [DATASET_PATH] [RANK_TABLE_FILE]
-
sh run_distribute_train_gpu.sh [DEVICE_NUM] [DATASET_PATH]
-
sh run_standalone_train.sh [DEVICE_ID] [DEVICE_TARGET] [DATASET_PATH]
-
python train.py --dataset_path [DATASET_PATH] --device_target [DEVICE_TARGET]
### Launch
```
# distribute training example
sh scripts/run_distribute_train.sh 8 /opt/dataset/criteo /opt/mindspore_hccl_file.json
sh scripts/run_distribute_train_gpu.sh 8 /opt/dataset/criteo
# standalone training example
sh scripts/run_standalone_train.sh 0 /opt/dataset/criteo
sh scripts/run_standalone_train.sh 0
Ascend
/opt/dataset/criteo
or
python train.py --dataset_path /opt/dataset/criteo > output.log 2>&1 &
python train.py --dataset_path /opt/dataset/criteo
--device_target Ascend
> output.log 2>&1 &
```
### Result
...
...
@@ -71,13 +75,13 @@ and eval log will be redirected to `./auc.log` by default.
### Usage
-
sh run_eval.sh [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
-
sh run_eval.sh [DEVICE_ID] [D
EVICE_TARGET] [D
ATASET_PATH] [CHECKPOINT_PATH]
### Launch
```
# infer example
sh scripts/run_eval.sh 0 ~/criteo/eval/ ~/train/deepfm-15_41257.ckpt
sh scripts/run_eval.sh 0
Ascend
~/criteo/eval/ ~/train/deepfm-15_41257.ckpt
```
> checkpoint can be produced in training process.
...
...
@@ -92,6 +96,15 @@ Inference result will be stored in the example path, you can find result like th
# Model description
## Learning Rate
| Number of Devices | Learning Rate |
| ---------------------- | ------------------ |
| 1 | 1e-5 |
| 8 | 1e-4 |
> Change the learning rate at src/config.py accordingly.
## Performance
### Training Performance
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录