提交 0f58f033 编写于 作者: I islam_amin

updating ut for RandomHorizontalFlipWithBBox and BBoxAugment

上级 a12f9614
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random horizontal flip with bounding boxes op in DE
"""
from enum import Enum
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
class BoxType(Enum):
"""
Defines box types for test cases
"""
WidthOverflow = 1
HeightOverflow = 2
NegativeXY = 3
OnEdge = 4
WrongShape = 5
def add_bad_annotation(img, bboxes, box_type):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:param box_type: type of bad box
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes
def h_flip(image):
"""
Apply the random_horizontal
"""
# that's why we flip here too
image = image[:, ::-1, :]
return image
def check_bad_box(data, box_type, expected_error):
"""
:param data: de object detection pipeline
:param box_type: type of bad box
:param expected_error: error expected to get due to bad box
:return: None
"""
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
try:
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to use width overflow
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
for _, _ in enumerate(data.create_dict_iterator()):
break
except RuntimeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert expected_error in str(error)
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
return bboxes
def add_bounding_boxes(axis, bboxes):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for bbox in bboxes:
rect = patches.Rectangle((bbox[0], bbox[1]),
bbox[2], bbox[3],
linewidth=1, edgecolor='r', facecolor='none')
# Add the patch to the Axes
axis.add_patch(rect)
def visualize(unaugmented_data, augment_data):
"""
:param unaugmented_data: original data
:param augment_data: data after augmentations
:return: None
"""
for idx, (un_aug_item, aug_item) in \
enumerate(zip(unaugmented_data.create_dict_iterator(),
augment_data.create_dict_iterator())):
axis = plt.subplot(141)
plt.imshow(un_aug_item["image"])
add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes
plt.title("Original" + str(idx + 1))
logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"])
axis = plt.subplot(142)
plt.imshow(aug_item["image"])
add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes
plt.title("Augmented" + str(idx + 1))
logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n")
plt.show()
def test_random_horizontal_bbox_op(plot=False):
"""
Test RandomHorizontalFlipWithBBox op
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_random_horizontal_bbox_c")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot:
visualize(data_voc1, data_voc2)
def test_random_horizontal_bbox_valid_prob_c(plot=False):
"""
Test RandomHorizontalFlipWithBBox op
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_random_horizontal_bbox_valid_prob_c")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
test_op = c_vision.RandomHorizontalFlipWithBBox(0.3)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot:
visualize(data_voc1, data_voc2)
def test_random_horizontal_bbox_invalid_prob_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_random_horizontal_bbox_invalid_prob_c")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# Note: Valid range of prob should be [0.0, 1.0]
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_random_horizontal_bbox_invalid_bounds_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
"""
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_random_horizontal_bbox_op(False)
test_random_horizontal_bbox_valid_prob_c(False)
test_random_horizontal_bbox_invalid_prob_c()
test_random_horizontal_bbox_invalid_bounds_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random horizontal flip with bounding boxes op in DE
"""
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
return bboxes
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
"""
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_flip_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False):
"""
Uses a valid non-default input, expect to pass
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_bbox_valid_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
"""
Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_horizontal_flip_with_bbox_valid_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_random_horizontal_bbox_invalid_prob_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# Note: Valid range of prob should be [0.0, 1.0]
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
"""
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_random_horizontal_flip_with_bbox_op_c(plot_vis=False)
test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_invalid_prob_c()
test_random_horizontal_flip_with_bbox_invalid_bounds_c()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册