提交 0a368494 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2499 HostAllGather and HostReduceScatter change to internal interface

Merge pull request !2499 from yihuaijie/master
......@@ -36,7 +36,7 @@ class AllGatherCPUKernel : public CPUKernel {
std::vector<int> ranks_group_;
};
MS_REG_CPU_KERNEL(HostAllGather, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
MS_REG_CPU_KERNEL(_HostAllGather, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
AllGatherCPUKernel);
} // namespace kernel
} // namespace mindspore
......
......@@ -37,7 +37,7 @@ class ReduceScatterCPUKernel : public CPUKernel {
std::vector<int> ranks_group_;
};
MS_REG_CPU_KERNEL(HostReduceScatter, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
MS_REG_CPU_KERNEL(_HostReduceScatter, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ReduceScatterCPUKernel);
} // namespace kernel
} // namespace mindspore
......
......@@ -145,7 +145,7 @@ constexpr char MIRROR_OPERATOR[] = "_MirrorOperator";
constexpr char STRIDED_SLICE[] = "StridedSlice";
constexpr char ALL_GATHER[] = "AllGather";
constexpr char REDUCE_SCATTER[] = "ReduceScatter";
constexpr char HOST_REDUCE_SCATTER[] = "HostReduceScatter";
constexpr char HOST_REDUCE_SCATTER[] = "_HostReduceScatter";
constexpr char EMBEDDING_LOOKUP[] = "EmbeddingLookup";
constexpr char CONCAT[] = "Concat";
constexpr char SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SoftmaxCrossEntropyWithLogits";
......
......@@ -55,9 +55,7 @@ const char kNameSimpleMeanGrad[] = "SimpleMeanGrad";
const char kNameAllReduce[] = "AllReduce";
const char kNameBroadcast[] = "Broadcast";
const char kNameAllgather[] = "AllGather";
const char kNameHostAllgather[] = "HostAllGather";
const char kNameReduceScatter[] = "ReduceScatter";
const char kNameHostReduceScatter[] = "HostReduceScatter";
const char kNameReduceSum[] = "ReduceSum";
const char kNameIsFinite[] = "isFinite";
const char kNameReciprocal[] = "Reciprocal";
......
......@@ -18,9 +18,9 @@ import mindspore.common.dtype as mstype
from mindspore.ops import functional as F
from .. import operations as P
from ..composite.multitype_ops.zeros_like_impl import zeros_like
from ..operations.comm_ops import (AllGather, HostAllGather, AllReduce, _AlltoAll, Broadcast,
from ..operations.comm_ops import (AllGather, _HostAllGather, AllReduce, _AlltoAll, Broadcast,
_GetTensorSlice, _MirrorOperator, ReduceOp,
ReduceScatter, HostReduceScatter, _VirtualDiv)
ReduceScatter, _HostReduceScatter, _VirtualDiv)
from .grad_base import bprop_getters
......@@ -93,10 +93,10 @@ def get_bprop_all_gather(self):
return bprop
@bprop_getters.register(HostAllGather)
@bprop_getters.register(_HostAllGather)
def get_bprop_host_all_gather(self):
"""Generate bprop for HostAllGather"""
host_all_gather_grad = HostReduceScatter(ReduceOp.SUM, self.group)
"""Generate bprop for _HostAllGather"""
host_all_gather_grad = _HostReduceScatter(ReduceOp.SUM, self.group)
if self.instance_name:
instance_name = "grad" + self.instance_name
host_all_gather_grad.set_prim_instance_name(instance_name)
......@@ -126,10 +126,10 @@ def get_bprop_reduce_scatter(self):
return bprop
@bprop_getters.register(HostReduceScatter)
@bprop_getters.register(_HostReduceScatter)
def get_bprop_host_reduce_scatter(self):
"""Generate bprop for HostReduceScatter"""
host_reduce_scatter_grad = HostAllGather(self.group)
"""Generate bprop for _HostReduceScatter"""
host_reduce_scatter_grad = _HostAllGather(self.group)
if self.instance_name:
instance_name = "grad" + self.instance_name
host_reduce_scatter_grad.set_prim_instance_name(instance_name)
......
......@@ -35,7 +35,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
from .comm_ops import (AllGather, AllReduce, _AlltoAll, ReduceScatter, Broadcast,
_MirrorOperator, ReduceOp, _VirtualDataset,
_VirtualDiv, _GetTensorSlice,
HostAllGather, HostReduceScatter)
_HostAllGather, _HostReduceScatter)
from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary,
TensorSummary, HistogramSummary, Debug, Print)
from .control_ops import ControlDepend, GeSwitch, Merge
......@@ -244,10 +244,8 @@ __all__ = [
'UnsortedSegmentSum',
'UnsortedSegmentMin',
"AllGather",
"HostAllGather",
"AllReduce",
"ReduceScatter",
"HostReduceScatter",
"Broadcast",
"ReduceOp",
'ScalarCast',
......
......@@ -1166,7 +1166,7 @@ class EmbeddingLookupCommGrad(PrimitiveWithInfer):
Perform the gradient for the communication part of EmbeddingLookup operator.
This works ONLY when 'reduce_scatter_flag' is True in 'EmbeddingLookup'. Roughly speaking,
this primitive is implemented by StridedSlice --> HostAllGather --> Concat. This primitive runs on host.
this primitive is implemented by StridedSlice --> _HostAllGather --> Concat. This primitive runs on host.
"""
@prim_attr_register
def __init__(self):
......@@ -1177,8 +1177,8 @@ class EmbeddingLookupCommGrad(PrimitiveWithInfer):
"""
This primitive is implemented by three steps:
1) Split the 'dy' along dimension 0 into 'split_num' parts.
2) For each part, perform HostAllGather((0, 1, 2, 3, 4, 5, 6, 7)) on the host.
3) After HostAllGather, there are still 'split_num' parts in each process. Then, perform Concat on them
2) For each part, perform _HostAllGather((0, 1, 2, 3, 4, 5, 6, 7)) on the host.
3) After _HostAllGather, there are still 'split_num' parts in each process. Then, perform Concat on them
along dimension 0.
The output shape of this primitive: shape(output)[0] == shape(dy)[0] * 8
......
......@@ -176,13 +176,13 @@ class AllGather(PrimitiveWithInfer):
raise NotImplementedError
class HostAllGather(PrimitiveWithInfer):
class _HostAllGather(PrimitiveWithInfer):
"""
Gathers tensors from the specified communication group on host.
Note:
Tensor must have the same shape and format in all processes participating in the collective.
HostAllGather is a host-side operator, it depends on OpenMPI and must use build option -M on
_HostAllGather is a host-side operator, it depends on OpenMPI and must use build option -M on
to enable it. Using mpirun command to run it:
mpirun -output-filename log -merge-stderr-to-stdout -np 3 python test_host_all_gather.py
......@@ -199,27 +199,6 @@ class HostAllGather(PrimitiveWithInfer):
Outputs:
Tensor. If the number of devices in the group is N,
then the shape of output is :math:`(N, x_1, x_2, ..., x_R)`.
Examples:
>>> import mindspore.nn as nn
>>> import mindspore.context as context
>>> import mindspore.ops.operations as P
>>> from mindspore import Tensor
>>>
>>> context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
>>> context.set_mpi_config(enable_mpi=True)
>>>
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.hostallgather = P.HostAllGather(group=(0, 1, 2, 3))
>>>
>>> def construct(self, x):
>>> return self.hostallgather(x)
>>>
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32))
>>> net = Net()
>>> output = net(input_)
"""
@prim_attr_register
......@@ -308,13 +287,13 @@ class ReduceScatter(PrimitiveWithInfer):
raise NotImplementedError
class HostReduceScatter(PrimitiveWithInfer):
class _HostReduceScatter(PrimitiveWithInfer):
"""
Reduces and scatters tensors from the specified communication group on host.
Note:
Tensor must have the same shape and format in all processes participating in the collective.
HostReduceScatter is a host-side operator, it depends on OpenMPI and must use build option
_HostReduceScatter is a host-side operator, it depends on OpenMPI and must use build option
-M on to enable it. Using mpirun command to run it:
mpirun -output-filename log -merge-stderr-to-stdout -np 3 python test_host_reduce_scatter.py
......@@ -328,28 +307,6 @@ class HostReduceScatter(PrimitiveWithInfer):
or elements of group are not int.
ValueError: If the first dimension of input can not be divided by group size,
or group is not set, or rank_id not in [0, 7].
Examples:
>>> import mindspore.nn as nn
>>> import mindspore.context as context
>>> import mindspore.ops.operations as P
>>> from mindspore import Tensor
>>> from mindspore.ops.operations.comm_ops import ReduceOp
>>>
>>> context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
>>> context.set_mpi_config(enable_mpi=True)
>>>
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.hostreducescatter = P.HostReduceScatter(ReduceOp.SUM, group=[0, 1, 2, 3])
>>>
>>> def construct(self, x):
>>> return self.hostreducescatter(x)
>>>
>>> input_ = Tensor(np.ones([8, 8]).astype(np.float32))
>>> net = Net()
>>> output = net(input_)
"""
@prim_attr_register
def __init__(self, op=ReduceOp.SUM, group=None):
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
import mindspore._ms_mpi as mpi
# run comand:
# mpirun -output-filename log -merge-stderr-to-stdout -np 3 python test_reduce_scatter.py
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
context.set_mpi_config(enable_mpi=True)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.op = "sum"
self.reducescatter = P.HostReduceScatter(op=self.op, group=[0,1,2])
def construct(self, x):
return self.reducescatter(x)
class AllGatherNet(nn.Cell):
def __init__(self):
super(AllGatherNet, self).__init__()
self.hostallgather = P.HostAllGather(group=(0, 1, 2))
def construct(self, x):
return self.hostallgather(x)
def test_net_reduce_scatter():
x = np.arange(12).astype(np.float32) * 0.1
reducescatter = Net()
rankid = mpi.get_rank_id()
print("self rankid:", rankid)
output = reducescatter(Tensor(x, mstype.float32))
print("output:\n", output)
if rankid == 0:
expect_result = np.arange(4).astype(np.float32) * 0.3
if rankid == 1:
expect_result = np.arange(4, 8).astype(np.float32) * 0.3
if rankid == 2:
expect_result = np.arange(8, 12).astype(np.float32) * 0.3
diff = abs(output.asnumpy() - expect_result)
error = np.ones(shape=expect_result.shape) * 1.0e-6
assert np.all(diff < error)
allgather = AllGatherNet()
allgather_output = allgather(output)
print("allgather result:\n", allgather_output)
expect_allgather_result = np.arange(12).astype(np.float32) * 0.3
diff = abs(allgather_output.asnumpy() - expect_allgather_result)
error = np.ones(shape=expect_allgather_result.shape) * 1.0e-6
assert np.all(diff < error)
if __name__ == '__main__':
test_net_reduce_scatter()
......@@ -26,7 +26,6 @@ from mindspore.nn import Momentum
from mindspore.nn import ReLU
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp, ReduceScatter
from mindspore.ops.operations.comm_ops import HostAllGather, HostReduceScatter
from mindspore.ops.operations.comm_ops import Broadcast
# pylint: disable=W0212
......@@ -87,21 +86,6 @@ class AllGatherNet(nn.Cell):
return self.relu(x)
class HostAllGatherNet(nn.Cell):
"""HostAllGatherNet definition"""
def __init__(self, input_channel, output_channel):
super(HostAllGatherNet, self).__init__()
self.dense = Dense(input_channel, output_channel)
self.hostallgather = HostAllGather((0, 1))
self.relu = ReLU()
def construct(self, x):
x = self.dense(x)
x = self.hostallgather(x)
return self.relu(x)
class ReduceScatterNet(nn.Cell):
"""ReduceScatterNet definition"""
......@@ -117,21 +101,6 @@ class ReduceScatterNet(nn.Cell):
return self.relu(x)
class HostReduceScatterNet(nn.Cell):
"""HostReduceScatterNet definition"""
def __init__(self, input_channel, out_channel, op):
super(HostReduceScatterNet, self).__init__()
self.dense = Dense(input_channel, out_channel)
self.hostreducescatter = HostReduceScatter(op, (0, 1))
self.relu = ReLU()
def construct(self, x):
x = self.dense(x)
x = self.hostreducescatter(x)
return self.relu(x)
class AlltoAllNet(nn.Cell):
"""AlltoAllNet definition"""
......@@ -185,21 +154,6 @@ def test_allgather():
_executor.compile(network, input_tensor, label_tensor)
def test_hostallgather():
"""test_hostallgather"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2], [2.2], [3.2], [4.2]], dtype=np.float32))
network = HostAllGatherNet(2, 1)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor, label_tensor)
def run_reducescatter(op):
"""run_reducescatter"""
context.set_context(mode=context.GRAPH_MODE)
......@@ -221,21 +175,6 @@ def test_reducescatter():
run_reducescatter(ReduceOp.SUM)
def test_hostreducescatter():
"""test_hostreducescatter"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2]], dtype=np.float32))
network = HostReduceScatterNet(2, 1, ReduceOp.SUM)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor, label_tensor)
def test_broadcast():
"""test_broadcast"""
context.set_context(mode=context.GRAPH_MODE)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册