提交 098eec46 编写于 作者: D dengwentao

add cpu op embedding_look_up

上级 ccd7ea6e
......@@ -25,6 +25,9 @@ if (ENABLE_CPU)
if (NOT ENABLE_MPI)
list(REMOVE_ITEM CPU_SRC_LIST "cpu/allgather_cpu_kernel.cc")
list(REMOVE_ITEM CPU_SRC_LIST "cpu/reduce_scatter_cpu_kernel.cc")
list(REMOVE_ITEM CPU_SRC_LIST "cpu/embedding_look_up_comm_grad_cpu_kernel.cc")
list(REMOVE_ITEM CPU_SRC_LIST "cpu/embedding_look_up_cpu_kernel.cc")
list(REMOVE_ITEM CPU_SRC_LIST "cpu/subscalar_cpu_kernel.cc")
endif ()
endif ()
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include "kernel/cpu/embedding_look_up_comm_grad_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
#include "device/cpu/mpi/mpi_adapter.h"
#include "ir/primitive.h"
namespace mindspore {
namespace kernel {
void EmbeddingLookUpCommGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
split_num_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "split_num");
MS_LOG(INFO) << "split_num: " << split_num_;
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape[0] % split_num_ != 0) {
MS_LOG(EXCEPTION) << "Input shape[0] is " << input_shape[0] << ", but it must be multiple of split_num.";
}
}
bool EmbeddingLookUpCommGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
#if defined(_WIN32) || defined(_WIN64)
auto start_time = std::chrono::steady_clock::now();
#else
struct timeval start_time, end_time;
(void)gettimeofday(&start_time, nullptr);
#endif
auto input_addr = reinterpret_cast<float *>(inputs[0]->addr);
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
size_t input_size = inputs[0]->size;
size_t output_size = outputs[0]->size;
MS_LOG(DEBUG) << "input addr: " << input_addr << "input size: " << input_size;
MS_LOG(DEBUG) << "output addr: " << output_addr << "output size: " << output_size;
memset_s(output_addr, output_size, 0, output_size);
const std::vector<int> &rank_group = {0, 1, 2, 3, 4, 5, 6, 7};
size_t input_split_lens = input_size / split_num_ / sizeof(float_t);
size_t output_split_lens = output_size / split_num_ / sizeof(float_t);
for (int i = 0; i < split_num_; i++) {
device::cpu::MPIAdapter::Instance().AllGather(input_addr + i * input_split_lens,
output_addr + i * output_split_lens, rank_group, input_split_lens);
}
#if defined(_WIN32) || defined(_WIN64)
auto end_time = std::chrono::steady_clock::now();
std::chrono::duration<double, std::ratio<1, 1000000>> cost = end_time - start_time;
MS_LOG(INFO) << "EmbeddingLookUpCommGradCPUKernel, used time: " << cost.count() << " us";
#else
(void)gettimeofday(&end_time, nullptr);
uint64_t time = 1000000 * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
time += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
MS_LOG(INFO) << "EmbeddingLookUpCommGradCPUKernel, used time: " << time << " us";
#endif
return true;
}
void EmbeddingLookUpCommGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but EmbeddingLookUpCommGradCPUKernel needs 1.";
}
}
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_COMM_GRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_COMM_GRAD_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class EmbeddingLookUpCommGradCPUKernel : public CPUKernel {
public:
EmbeddingLookUpCommGradCPUKernel() : split_num_(1) {}
~EmbeddingLookUpCommGradCPUKernel() override{};
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void CheckParam(const CNodePtr &kernel_node);
int split_num_;
};
MS_REG_CPU_KERNEL(EmbeddingLookupCommGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
EmbeddingLookUpCommGradCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_COMM_GRAD_CPU_KERNEL_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include <string>
#include "kernel/cpu/embedding_look_up_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
#include "device/cpu/mpi/mpi_adapter.h"
#include "ir/primitive.h"
namespace mindspore {
namespace kernel {
void EmbeddingLookUpCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_lens_ = 1;
for (auto shape : input_shape_) {
MS_LOG(DEBUG) << "input shape: " << shape;
input_lens_ = input_lens_ * shape;
}
MS_LOG(DEBUG) << "input lens: " << input_lens_;
indices_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
indices_lens_ = 1;
for (auto shape : indices_shape_) {
MS_LOG(DEBUG) << "indice shape: " << shape;
indices_lens_ = indices_lens_ * shape;
}
MS_LOG(DEBUG) << "indice lens: " << indices_lens_;
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (auto shape : output_shape_) {
MS_LOG(DEBUG) << "output shape: " << shape;
}
auto output_type = AnfAlgo::GetOutputInferDataType(kernel_node, 0);
MS_LOG(DEBUG) << "output type: " << output_type;
int axis = AnfAlgo::GetNodeAttr<int>(kernel_node, "axis");
MS_LOG(DEBUG) << "axis: " << axis;
if (axis_ < 0) {
axis = axis + SizeToInt(input_shape_.size());
}
axis_ = 4 - input_shape_.size() + axis;
MS_LOG(DEBUG) << "axis_: " << axis_;
reduce_scatter_flag_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "reduce_scatter_flag");
MS_LOG(DEBUG) << "reduce_scatter_flag: " << reduce_scatter_flag_;
if (reduce_scatter_flag_) {
size_t gatherv2_out_lens = 1;
for (int i = 0; i < SizeToInt(input_shape_.size()); i++) {
if (i == axis) {
for (int j = 0; j < SizeToInt(indices_shape_.size()); j++) {
MS_LOG(DEBUG) << "gatherv2 out shape: " << indices_shape_[j];
gatherv2_out_lens = gatherv2_out_lens * indices_shape_[j];
}
} else {
MS_LOG(DEBUG) << "gatherv2 out shape: " << input_shape_[i];
gatherv2_out_lens = gatherv2_out_lens * input_shape_[i];
}
}
gatherv2_out_lens_ = gatherv2_out_lens * sizeof(float);
MS_LOG(DEBUG) << "gatherv2 out lens: " << gatherv2_out_lens_;
gather_v2_out_ = malloc(gatherv2_out_lens_);
if (gather_v2_out_ == nullptr) {
MS_LOG(EXCEPTION) << "EmbeddingLookUpCPUKernel malloc failed, malloc lens: " << gatherv2_out_lens_;
}
memset_s(gather_v2_out_, gatherv2_out_lens_, 0, gatherv2_out_lens_);
split_num_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "split_num");
MS_LOG(DEBUG) << "split_num: " << split_num_;
}
offset_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "offset");
MS_LOG(DEBUG) << "offset: " << offset_;
CPUKernelUtils::ExpandDimsTo4(&input_shape_);
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
}
bool EmbeddingLookUpCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
#if defined(_WIN32) || defined(_WIN64)
auto start_time = std::chrono::steady_clock::now();
#else
struct timeval start_time, end_time;
(void)gettimeofday(&start_time, nullptr);
#endif
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
MS_LOG(DEBUG) << "output addr: " << output_addr << "output size: " << outputs[0]->size;
float *gather_out_addr = reduce_scatter_flag_ ? reinterpret_cast<float *>(gather_v2_out_) : output_addr;
MS_LOG(DEBUG) << "gatherv2 out addr: " << gather_out_addr;
size_t dim0 = input_shape_[0];
size_t dim1 = input_shape_[1];
size_t dim2 = input_shape_[2];
if (axis_ == 3) {
for (size_t i = 0; i < dim0; ++i) {
for (size_t j = 0; j < dim1; ++j) {
for (size_t k = 0; k < dim2; ++k) {
LookUpTable(inputs, i, j, k, &gather_out_addr);
}
}
}
} else if (axis_ == 2) {
for (size_t i = 0; i < dim0; ++i) {
for (size_t j = 0; j < dim1; ++j) {
LookUpTable(inputs, i, j, 0, &gather_out_addr);
}
}
} else if (axis_ == 1) {
for (size_t i = 0; i < dim0; ++i) {
LookUpTable(inputs, i, 0, 0, &gather_out_addr);
}
} else if (axis_ == 0) {
LookUpTable(inputs, 0, 0, 0, &gather_out_addr);
}
if (reduce_scatter_flag_) {
size_t one_split_lens = gatherv2_out_lens_ / split_num_ / sizeof(float);
size_t reduce_scatter_out_lens = one_split_lens / 8;
const std::vector<int> &group = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 0; i < split_num_; i++) {
device::cpu::MPIAdapter::Instance().ReduceScatter(reinterpret_cast<float *>(gather_v2_out_) + i * one_split_lens,
output_addr + i * reduce_scatter_out_lens, group,
one_split_lens, "sum");
}
}
#if defined(_WIN32) || defined(_WIN64)
auto end_time = std::chrono::steady_clock::now();
std::chrono::duration<double, std::ratio<1, 1000000>> cost = end_time - start_time;
MS_LOG(INFO) << "EmbeddingLookUpCPUKernel, used time: " << cost.count() << " us";
#else
(void)gettimeofday(&end_time, nullptr);
uint64_t time = 1000000 * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
time += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
MS_LOG(INFO) << "EmbeddingLookUpCPUKernel, used time: " << time << " us";
#endif
return true;
}
void memcpy_task(std::vector<float *> mem_dest_addr_list, std::vector<float *> mem_src_addr_list, size_t start,
size_t end, size_t lens) {
for (size_t i = start; i < end; i++) {
auto ret = memcpy_s(mem_dest_addr_list[i], lens, mem_src_addr_list[i], lens);
if (ret != EOK) {
MS_LOG(EXCEPTION) << "memery copy failed.";
}
}
return;
}
void EmbeddingLookUpCPUKernel::LookUpTable(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1,
size_t dim2, float **output_addr) {
auto input_addr = reinterpret_cast<float *>(inputs[0]->addr);
auto indices_addr = reinterpret_cast<int *>(inputs[1]->addr);
size_t num = CPUKernelUtils::GetElementNumOnAxis(input_shape_, axis_);
size_t lens = num * sizeof(float);
std::vector<float *> mem_dest_addr_list;
std::vector<float *> mem_src_addr_list;
for (size_t i = 0; i < indices_lens_; ++i) {
int indices = indices_addr[i] - offset_;
if (indices >= 0) {
size_t index = IntToSize(indices);
if (index < input_shape_[axis_]) {
size_t pos = 0;
if (axis_ == 3) {
pos = CPUKernelUtils::CalcOffset(input_shape_, dim0, dim1, dim2, index);
} else if (axis_ == 2) {
pos = CPUKernelUtils::CalcOffset(input_shape_, dim0, dim1, index, 0);
} else if (axis_ == 1) {
pos = CPUKernelUtils::CalcOffset(input_shape_, dim0, index, 0, 0);
} else if (axis_ == 0) {
pos = CPUKernelUtils::CalcOffset(input_shape_, index, 0, 0, 0);
}
if (pos + num <= input_lens_) {
mem_dest_addr_list.push_back(*output_addr);
mem_src_addr_list.push_back(input_addr + pos);
}
}
}
*output_addr += num;
}
const size_t thread_num = 8;
std::thread threads[8];
size_t memcpy_lens = mem_dest_addr_list.size();
size_t start = 0;
size_t ones_copy_lens = (memcpy_lens + thread_num - 1) / thread_num;
size_t i;
for (i = 0; i < thread_num; i++) {
if (start > memcpy_lens) {
break;
}
auto end = (start + ones_copy_lens) > memcpy_lens ? memcpy_lens : start + ones_copy_lens;
threads[i] = std::thread(memcpy_task, mem_dest_addr_list, mem_src_addr_list, start, end, lens);
start = start + ones_copy_lens;
}
for (size_t j = 0; j < i; j++) {
threads[j].join();
}
}
void EmbeddingLookUpCPUKernel::CheckParam(const CNodePtr &kernel_node) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() > 4) {
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size()
<< ", but EmbeddingLookUpCPUKernel olny support 4d or lower.";
}
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but EmbeddingLookUpCPUKernel needs 2.";
}
}
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class EmbeddingLookUpCPUKernel : public CPUKernel {
public:
EmbeddingLookUpCPUKernel() {
axis_ = 0;
offset_ = 0;
split_num_ = 0;
input_lens_ = 0;
indices_lens_ = 0;
gatherv2_out_lens_ = 0;
reduce_scatter_flag_ = false;
gather_v2_out_ = nullptr;
}
~EmbeddingLookUpCPUKernel() override {
if (gather_v2_out_ != nullptr) {
free(gather_v2_out_);
gather_v2_out_ = nullptr;
}
}
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void LookUpTable(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1, size_t dim2,
float **output_addr);
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> input_shape_;
std::vector<size_t> indices_shape_;
std::vector<size_t> output_shape_;
int axis_;
int offset_;
int split_num_;
size_t input_lens_;
size_t indices_lens_;
size_t gatherv2_out_lens_;
bool reduce_scatter_flag_;
void *gather_v2_out_;
};
MS_REG_CPU_KERNEL(
EmbeddingLookup,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
EmbeddingLookUpCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_EMBEDDING_LOOK_UP_CPU_KERNEL_H_
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include "kernel/cpu/subscalar_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void SubscalarCPUKernel::InitKernel(const CNodePtr &kernel_node) {
offset_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "input_y");
MS_LOG(DEBUG) << "offset: " << offset_;
}
void sub_task(int *in_addr, int *out_addr, size_t lens, int offset) {
for (size_t i = 0; i < lens; i++) {
out_addr[i] = in_addr[i] - offset;
}
}
bool SubscalarCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
#if defined(_WIN32) || defined(_WIN64)
auto start_time = std::chrono::steady_clock::now();
#else
struct timeval start_time, end_time;
(void)gettimeofday(&start_time, nullptr);
#endif
auto input_addr = reinterpret_cast<int *>(inputs[0]->addr);
auto output_addr = reinterpret_cast<int *>(outputs[0]->addr);
auto lens = inputs[0]->size / sizeof(int);
if (lens < 10000) {
for (size_t i = 0; i < lens; i++) {
output_addr[i] = input_addr[i] - offset_;
}
} else {
size_t thread_num = 4;
std::thread threads[4];
size_t process_lens = (lens + thread_num - 1) / thread_num;
size_t process_offset = 0;
for (size_t i = 0; i < thread_num; i++) {
threads[i] =
std::thread(sub_task, input_addr + process_offset, output_addr + process_offset, process_lens, offset_);
if (process_offset + process_lens > lens) {
process_lens = lens - process_offset;
process_offset = lens;
} else {
process_offset += process_lens;
}
}
for (size_t i = 0; i < thread_num; i++) {
threads[i].join();
}
}
#if defined(_WIN32) || defined(_WIN64)
auto end_time = std::chrono::steady_clock::now();
std::chrono::duration<double, std::ratio<1, 1000000>> cost = end_time - start_time;
MS_LOG(INFO) << "SubscaleCPUKernel, used time: " << cost.count() << " us";
#else
(void)gettimeofday(&end_time, nullptr);
uint64_t time = 1000000 * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
time += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
MS_LOG(INFO) << "SubscalarCPUKernel, used time: " << time << " us";
#endif
return true;
}
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SUBSCALAR_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SUBSCALAR_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class SubscalarCPUKernel : public CPUKernel {
public:
SubscalarCPUKernel() : offset_(0) {}
~SubscalarCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
int offset_;
};
MS_REG_CPU_KERNEL(Subscalar, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
SubscalarCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SUBSCALAR_CPU_KERNEL_H_
......@@ -133,6 +133,8 @@ const PrimitivePtr kPrimConcat = std::make_shared<Primitive>("Concat");
const PrimitivePtr kPrimSqueeze = std::make_shared<Primitive>("Squeeze");
const PrimitivePtr kPrimTranspose = std::make_shared<Primitive>("Transpose");
const PrimitivePtr kPrimGatherV2 = std::make_shared<Primitive>("GatherV2");
const PrimitivePtr kPrimEmbeddingLookup = std::make_shared<Primitive>("EmbeddingLookup");
const PrimitivePtr kPrimEmbeddingLookupCommGrad = std::make_shared<Primitive>("EmbeddingLookupCommGrad");
const PrimitivePtr kPrimSize = std::make_shared<Primitive>("Size");
const PrimitivePtr kPrimArgMax = std::make_shared<Primitive>("Argmax");
const PrimitivePtr kPrimPack = std::make_shared<Primitive>("Pack");
......@@ -168,6 +170,7 @@ const PrimitivePtr kPrimLess = std::make_shared<Primitive>("Less");
const PrimitivePtr kPrimLessEqual = std::make_shared<Primitive>("LessEqual");
const PrimitivePtr kPrimCumSum = std::make_shared<Primitive>("CumSum");
const PrimitivePtr kPrimCumProd = std::make_shared<Primitive>("CumProd");
const PrimitivePtr kPrimSubscalar = std::make_shared<Primitive>("Subscalar");
// NN
const PrimitivePtr kPrimFlatten = std::make_shared<Primitive>("Flatten");
......
......@@ -140,6 +140,8 @@ extern const PrimitivePtr kPrimConcat;
extern const PrimitivePtr kPrimSqueeze;
extern const PrimitivePtr kPrimTranspose;
extern const PrimitivePtr kPrimGatherV2;
extern const PrimitivePtr kPrimEmbeddingLookup;
extern const PrimitivePtr kPrimEmbeddingLookupCommGrad;
extern const PrimitivePtr kPrimSize;
extern const PrimitivePtr kPrimArgMax;
extern const PrimitivePtr kPrimPack;
......@@ -176,6 +178,7 @@ extern const PrimitivePtr kPrimLess;
extern const PrimitivePtr kPrimLessEqual;
extern const PrimitivePtr kPrimCumSum;
extern const PrimitivePtr kPrimCumProd;
extern const PrimitivePtr kPrimSubscalar;
// NN
extern const PrimitivePtr kPrimFlatten;
......
......@@ -36,6 +36,9 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
Register(prim::kPrimReduceSum->name(), {1});
Register(prim::kPrimReduceMean->name(), {1});
Register(prim::kPrimGatherV2->name(), {2});
Register(prim::kPrimEmbeddingLookup->name(), {2, 3, 4, 5});
Register(prim::kPrimEmbeddingLookupCommGrad->name(), {1});
Register(prim::kPrimSubscalar->name(), {1});
Register(prim::kPrimTranspose->name(), {1});
Register(prim::kPrimUnsortedSegmentSum->name(), {2});
Register(prim::kPrimOneHot->name(), {1});
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册