提交 072b09b3 编写于 作者: V VectorSL

gpu add fusion: 1 replace bn cast 2 replace addn by tensoradd

上级 2f2dc390
......@@ -13,8 +13,8 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_FUSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_FUSION_H_
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_FUSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_FUSION_H_
#include <memory>
#include "backend/optimizer/common/optimizer.h"
......@@ -53,4 +53,4 @@ class AdamFusion : public PatternProcessPass {
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_FUSION_H_
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_FUSION_H_
......@@ -13,8 +13,8 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_WEIGHT_DECAY_FUSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_WEIGHT_DECAY_FUSION_H_
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_WEIGHT_DECAY_FUSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_WEIGHT_DECAY_FUSION_H_
#include <memory>
#include "backend/optimizer/common/optimizer.h"
......@@ -55,4 +55,4 @@ class AdamWeightDecayFusion : public PatternProcessPass {
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_GPU_IR_FUSION_ADAM_WEIGHT_DECAY_FUSION_H_
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_ADAM_WEIGHT_DECAY_FUSION_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/gpu/replace_addn_fusion.h"
#include <memory>
#include <vector>
#include <string>
#include "backend/session/anf_runtime_algorithm.h"
#include "ir/primitive.h"
#include "utils/utils.h"
#include "backend/optimizer/common/helper.h"
namespace mindspore {
namespace opt {
const BaseRef ReplaceAddNFusion::DefinePattern() const {
VectorRef addn = VectorRef({prim::kPrimAddN, A, B});
return addn;
}
const AnfNodePtr ReplaceAddNFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &equiv) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(equiv);
auto A = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(node), 0);
auto B = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(node), 1);
MS_EXCEPTION_IF_NULL(A);
MS_EXCEPTION_IF_NULL(B);
int num_input = AnfAlgo::GetNodeAttr<int>(node, "n");
if (num_input == 2) {
auto prim = std::make_shared<Primitive>(prim::kPrimTensorAdd->name());
MS_EXCEPTION_IF_NULL(prim);
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), A, B};
auto add_new = graph->NewCNode(inputs);
std::vector<TypeId> outputs_type;
std::vector<std::vector<size_t>> outputs_shape;
outputs_type.push_back(AnfAlgo::GetOutputInferDataType(A, 0));
outputs_shape.push_back(AnfAlgo::GetOutputInferShape(A, 0));
AnfAlgo::SetOutputInferTypeAndShape(outputs_type, outputs_shape, add_new.get());
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
manager->Replace(utils::cast<CNodePtr>(node), utils::cast<CNodePtr>(add_new));
return add_new;
} else {
return nullptr;
}
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_ADDN_FUSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_ADDN_FUSION_H_
#include <memory>
#include "backend/optimizer/common/optimizer.h"
namespace mindspore {
namespace opt {
class ReplaceAddNFusion : public PatternProcessPass {
public:
explicit ReplaceAddNFusion(bool multigraph = true) : PatternProcessPass("replace_addn", multigraph) {
A = std::make_shared<Var>();
B = std::make_shared<Var>();
}
~ReplaceAddNFusion() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
private:
VarPtr A;
VarPtr B;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_ADDN_FUSION_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/gpu/replace_bn_cast_fusion.h"
#include <memory>
#include <vector>
#include <string>
#include "backend/session/anf_runtime_algorithm.h"
#include "ir/primitive.h"
#include "utils/utils.h"
#include "backend/optimizer/common/helper.h"
namespace mindspore {
namespace opt {
const BaseRef ReplaceBNCastFusion::DefinePattern() const {
VectorRef in_cast = VectorRef({prim::kPrimCast, x_});
VectorRef fbn2 = VectorRef({prim::kPrimFusedBatchNorm, in_cast, scale_, bias_, mean_, var_});
VectorRef tupleget = VectorRef({prim::kPrimTupleGetItem, fbn2, index_});
VectorRef out_cast = VectorRef({prim::kPrimCast, tupleget});
return out_cast;
}
const AnfNodePtr ReplaceBNCastFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &equiv) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(equiv);
auto tuple = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(node), 0);
auto index_node = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(tuple), 1);
MS_EXCEPTION_IF_NULL(index_node);
auto value_node = index_node->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node);
int item_idx = GetValue<int>(value_node->value());
auto fbn2 = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(tuple), 0);
auto x_after = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(fbn2), 0);
auto x_before = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(x_after), 0);
if (item_idx != 0) {
return nullptr;
}
auto scale = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(fbn2), 1);
auto bias = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(fbn2), 2);
auto mean = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(fbn2), 3);
auto var = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(fbn2), 4);
MS_EXCEPTION_IF_NULL(fbn2);
MS_EXCEPTION_IF_NULL(x_after);
MS_EXCEPTION_IF_NULL(x_before);
MS_EXCEPTION_IF_NULL(scale);
MS_EXCEPTION_IF_NULL(bias);
MS_EXCEPTION_IF_NULL(mean);
MS_EXCEPTION_IF_NULL(var);
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
manager->Replace(utils::cast<CNodePtr>(x_after), utils::cast<CNodePtr>(x_before));
manager->Replace(utils::cast<CNodePtr>(node), utils::cast<CNodePtr>(tuple));
std::vector<TypeId> outputs_type;
std::vector<std::vector<size_t>> outputs_shape;
auto output_num = AnfAlgo::GetOutputTensorNum(fbn2);
for (size_t i = 0; i < output_num; i++) {
outputs_type.push_back(AnfAlgo::GetOutputInferDataType(fbn2, i));
outputs_shape.push_back(AnfAlgo::GetOutputInferShape(fbn2, i));
}
outputs_type[0] = kNumberTypeFloat16;
AnfAlgo::SetOutputInferTypeAndShape(outputs_type, outputs_shape, fbn2.get());
outputs_type.clear();
outputs_shape.clear();
outputs_type.push_back(kNumberTypeFloat16);
outputs_shape.push_back(AnfAlgo::GetOutputInferShape(tuple, 0));
AnfAlgo::SetOutputInferTypeAndShape(outputs_type, outputs_shape, tuple.get());
return tuple;
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_BN_CAST_FUSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_BN_CAST_FUSION_H_
#include <memory>
#include "backend/optimizer/common/optimizer.h"
namespace mindspore {
namespace opt {
class ReplaceBNCastFusion : public PatternProcessPass {
public:
explicit ReplaceBNCastFusion(bool multigraph = true) : PatternProcessPass("replace_bn_cast", multigraph) {
x_ = std::make_shared<Var>();
scale_ = std::make_shared<Var>();
bias_ = std::make_shared<Var>();
mean_ = std::make_shared<Var>();
var_ = std::make_shared<Var>();
y_ = std::make_shared<Var>();
running_mean_ = std::make_shared<Var>();
running_var_ = std::make_shared<Var>();
save_mean_ = std::make_shared<Var>();
save_var_ = std::make_shared<Var>();
index_ = std::make_shared<Var>();
}
~ReplaceBNCastFusion() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
private:
VarPtr x_;
VarPtr scale_;
VarPtr bias_;
VarPtr mean_;
VarPtr var_;
VarPtr y_;
VarPtr running_mean_;
VarPtr running_var_;
VarPtr save_mean_;
VarPtr save_var_;
VarPtr index_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GPU_REPLACE_BN_CAST_FUSION_H_
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册