test_serialize.py 10.8 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ut for model serialize(save/load)"""
import os
import stat
import time
J
jinyaohui 已提交
19

Z
zhunaipan 已提交
20 21 22 23
import numpy as np
import pytest

import mindspore.common.dtype as mstype
J
jinyaohui 已提交
24 25
import mindspore.nn as nn
from mindspore import context
Z
zhunaipan 已提交
26
from mindspore.common.parameter import Parameter
J
jinyaohui 已提交
27
from mindspore.common.tensor import Tensor
Z
zhunaipan 已提交
28 29
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn import WithLossCell, TrainOneStepCell
J
jinyaohui 已提交
30 31
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
Z
zhunaipan 已提交
32
from mindspore.train.callback import _CheckpointManager
J
jinyaohui 已提交
33 34
from mindspore.train.serialization import save_checkpoint, load_checkpoint, load_param_into_net, \
    _exec_save_checkpoint, export, _save_graph
W
Wei Luning 已提交
35
from ..ut_filter import run_on_onnxruntime, non_graph_engine
Z
zhunaipan 已提交
36 37 38 39 40 41

context.set_context(mode=context.GRAPH_MODE)


class Net(nn.Cell):
    """Net definition."""
J
jinyaohui 已提交
42

Z
zhunaipan 已提交
43 44 45 46 47
    def __init__(self, num_classes=10):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
B
buxue 已提交
48
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
Z
zhunaipan 已提交
49
        self.flatten = nn.Flatten()
J
jinyaohui 已提交
50
        self.fc = nn.Dense(int(224 * 224 * 64 / 16), num_classes)
Z
zhunaipan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    def construct(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


_input_x = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
_cur_dir = os.path.dirname(os.path.realpath(__file__))


def setup_module():
    import shutil
    if os.path.exists('./test_files'):
        shutil.rmtree('./test_files')


def test_save_graph():
    """ test_exec_save_graph """

    class Net(nn.Cell):
        def __init__(self):
            super(Net, self).__init__()
            self.add = P.TensorAdd()

        def construct(self, x, y):
            z = self.add(x, y)
            return z

    net = Net()
    net.set_train()
    out_me_list = []
    x = Tensor(np.random.rand(2, 1, 2, 3).astype(np.float32))
    y = Tensor(np.array([1.2]).astype(np.float32))
    out_put = net(x, y)
    _save_graph(network=net, file_name="net-graph.meta")
    out_me_list.append(out_put)


def test_save_checkpoint():
    """ test_save_checkpoint """
    parameter_list = []
    one_param = {}
    param1 = {}
    param2 = {}
    one_param['name'] = "param_test"
    one_param['data'] = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), dtype=mstype.float32)
    param1['name'] = "param"
    param1['data'] = Tensor(np.random.randint(0, 255, [12, 1024]), dtype=mstype.float32)
    param2['name'] = "new_param"
    param2['data'] = Tensor(np.random.randint(0, 255, [12, 1024, 1]), dtype=mstype.float32)
    parameter_list.append(one_param)
    parameter_list.append(param1)
    parameter_list.append(param2)

    if os.path.exists('./parameters.ckpt'):
        os.chmod('./parameters.ckpt', stat.S_IWRITE)
        os.remove('./parameters.ckpt')

    ckpoint_file_name = os.path.join(_cur_dir, './parameters.ckpt')
    save_checkpoint(parameter_list, ckpoint_file_name)


def test_load_checkpoint_error_filename():
    ckpoint_file_name = 1
    with pytest.raises(ValueError):
        load_checkpoint(ckpoint_file_name)


def test_load_checkpoint():
    ckpoint_file_name = os.path.join(_cur_dir, './parameters.ckpt')
    par_dict = load_checkpoint(ckpoint_file_name)

    assert len(par_dict) == 3
    assert par_dict['param_test'].name == 'param_test'
    assert par_dict['param_test'].data.dtype() == mstype.float32
    assert par_dict['param_test'].data.shape() == (1, 3, 224, 224)
    assert isinstance(par_dict, dict)


def test_checkpoint_manager():
    """ test_checkpoint_manager """
    ckp_mgr = _CheckpointManager()

    ckpoint_file_name = os.path.join(_cur_dir, './test1.ckpt')
    with open(ckpoint_file_name, 'w'):
        os.chmod(ckpoint_file_name, stat.S_IWUSR | stat.S_IRUSR)

    ckp_mgr.update_ckpoint_filelist(_cur_dir, "test")
    assert ckp_mgr.ckpoint_num == 1

    ckp_mgr.remove_ckpoint_file(ckpoint_file_name)
    ckp_mgr.update_ckpoint_filelist(_cur_dir, "test")
    assert ckp_mgr.ckpoint_num == 0
    assert not os.path.exists(ckpoint_file_name)

    another_file_name = os.path.join(_cur_dir, './test2.ckpt')
    another_file_name = os.path.realpath(another_file_name)
    with open(another_file_name, 'w'):
        os.chmod(another_file_name, stat.S_IWUSR | stat.S_IRUSR)

    ckp_mgr.update_ckpoint_filelist(_cur_dir, "test")
    assert ckp_mgr.ckpoint_num == 1
    ckp_mgr.remove_oldest_ckpoint_file()
    ckp_mgr.update_ckpoint_filelist(_cur_dir, "test")
    assert ckp_mgr.ckpoint_num == 0
    assert not os.path.exists(another_file_name)

    # test keep_one_ckpoint_per_minutes
    file1 = os.path.realpath(os.path.join(_cur_dir, './time_file1.ckpt'))
    file2 = os.path.realpath(os.path.join(_cur_dir, './time_file2.ckpt'))
    file3 = os.path.realpath(os.path.join(_cur_dir, './time_file3.ckpt'))
    with open(file1, 'w'):
        os.chmod(file1, stat.S_IWUSR | stat.S_IRUSR)
    with open(file2, 'w'):
        os.chmod(file2, stat.S_IWUSR | stat.S_IRUSR)
    with open(file3, 'w'):
        os.chmod(file3, stat.S_IWUSR | stat.S_IRUSR)
    time1 = time.time()
    ckp_mgr.update_ckpoint_filelist(_cur_dir, "time_file")
    assert ckp_mgr.ckpoint_num == 3
    ckp_mgr.keep_one_ckpoint_per_minutes(1, time1)
    ckp_mgr.update_ckpoint_filelist(_cur_dir, "time_file")
    assert ckp_mgr.ckpoint_num == 1
    if os.path.exists(_cur_dir + '/time_file1.ckpt'):
        os.chmod(_cur_dir + '/time_file1.ckpt', stat.S_IWRITE)
        os.remove(_cur_dir + '/time_file1.ckpt')


def test_load_param_into_net_error_net():
    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32),
                          name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    with pytest.raises(TypeError):
        load_param_into_net('', parameter_dict)


def test_load_param_into_net_error_dict():
    net = Net(10)
    with pytest.raises(TypeError):
        load_param_into_net(net, '')


def test_load_param_into_net_erro_dict_param():
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = ''
    parameter_dict["conv1.weight"] = one_param
    with pytest.raises(TypeError):
        load_param_into_net(net, parameter_dict)


def test_load_param_into_net_has_more_param():
    """ test_load_param_into_net_has_more_param """
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32),
                          name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    two_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32),
                          name="conv1.weight")
    parameter_dict["conv1.w"] = two_param
    load_param_into_net(net, parameter_dict)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 1


def test_load_param_into_net_param_type_and_shape_error():
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7))), name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    with pytest.raises(RuntimeError):
        load_param_into_net(net, parameter_dict)


def test_load_param_into_net_param_type_error():
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.int32),
                          name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    with pytest.raises(RuntimeError):
        load_param_into_net(net, parameter_dict)


def test_load_param_into_net_param_shape_error():
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7,)), dtype=mstype.int32),
                          name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    with pytest.raises(RuntimeError):
        load_param_into_net(net, parameter_dict)


def test_load_param_into_net():
    net = Net(10)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 0

    parameter_dict = {}
    one_param = Parameter(Tensor(np.ones(shape=(64, 3, 7, 7)), dtype=mstype.float32),
                          name="conv1.weight")
    parameter_dict["conv1.weight"] = one_param
    load_param_into_net(net, parameter_dict)
    assert net.conv1.weight.default_input.asnumpy()[0][0][0][0] == 1


def test_exec_save_checkpoint():
    net = Net()
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    opt = Momentum(net.trainable_params(), 0.0, 0.9, 0.0001, 1024)

    loss_net = WithLossCell(net, loss)
    train_network = TrainOneStepCell(loss_net, opt)
    _exec_save_checkpoint(train_network, ckpoint_file_name="./new_ckpt.ckpt")

    load_checkpoint("new_ckpt.ckpt")


def test_load_checkpoint_empty_file():
    os.mknod("empty.ckpt")
    with pytest.raises(ValueError):
        load_checkpoint("empty.ckpt")


class MYNET(nn.Cell):
    """ NET definition """
J
jinyaohui 已提交
293

Z
zhunaipan 已提交
294 295 296 297 298 299
    def __init__(self):
        super(MYNET, self).__init__()
        self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid')
        self.bn = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.flatten = nn.Flatten()
J
jinyaohui 已提交
300
        self.fc = nn.Dense(64 * 222 * 222, 3)  # padding=0
Z
zhunaipan 已提交
301 302 303 304 305 306 307 308 309 310

    def construct(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.flatten(x)
        out = self.fc(x)
        return out


W
Wei Luning 已提交
311
@non_graph_engine
Z
zhunaipan 已提交
312 313 314
def test_export():
    net = MYNET()
    input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
J
jinyaohui 已提交
315
    export(net, input_data, file_name="./me_export.pb", file_format="GEIR")
Z
zhunaipan 已提交
316 317 318


def teardown_module():
F
fary86 已提交
319
    files = ['parameters.ckpt', 'new_ckpt.ckpt', 'empty.ckpt']
Z
zhunaipan 已提交
320 321 322 323 324 325
    for item in files:
        file_name = './' + item
        if not os.path.exists(file_name):
            continue
        os.chmod(file_name, stat.S_IWRITE)
        os.remove(file_name)