test_onehot.py 5.7 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops.operations.comm_ops import _VirtualDataset
J
jinyaohui 已提交
24

Z
zhunaipan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
context.set_context(mode=context.GRAPH_MODE)


class NetWithLoss(nn.Cell):
    def __init__(self, network, strategy3, strategy4, axis):
        super(NetWithLoss, self).__init__()
        self.virtual_dataset = _VirtualDataset()
        self.one_hot = P.OneHot(axis=axis).set_strategy(strategy3)
        self.on_value = Tensor(2.0, ms.float32)
        self.off_value = Tensor(1.0, ms.float32)
        self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy4)
        self.network = network

    def construct(self, x, y, b):
        b_virtual = self.virtual_dataset(b)
        predict = self.network(x, y)
        label = self.one_hot(b_virtual, 64, self.on_value, self.off_value)
        return self.loss(predict, label)[0]


class GradWrap(nn.Cell):
    def __init__(self, network):
        super(GradWrap, self).__init__()
        self.network = network

    def construct(self, x, y, b):
        return C.grad_all(self.network)(x, y, b)


class Net(nn.Cell):
    def __init__(self, strategy1, strategy2):
        super().__init__()
        self.matmul = P.MatMul().set_strategy(strategy1)
        self.gelu = P.Gelu().set_strategy(strategy2)

    def construct(self, x, y):
        out = self.matmul(x, y)
        out = self.gelu(out)
        return out


def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot_axis=-1):
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2), strategy3, strategy4, axis=onthot_axis))
Y
yangzhenzhang 已提交
68
    net.set_auto_parallel()
Z
zhunaipan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
    if auto:
        context.set_auto_parallel_context(parallel_mode="auto_parallel")
    else:
        context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64]), dtype=ms.int32)
    _executor.compile(net, x, y, b)


def test_onehot_model_parallel():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
83
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
84 85 86 87 88 89 90 91
    strategy3 = ((1, 16), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4)


def test_onehot_batch_parallel():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
92
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
93 94 95 96 97 98 99 100
    strategy3 = ((16, 1), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4)


def test_onehot_batch_parallel_invalid_strategy():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
101 102
    strategy2 = ((2, 8),)
    strategy3 = ((16,), (), ())
Z
zhunaipan 已提交
103 104 105 106 107 108 109 110 111 112
    strategy4 = ((16, 1), (16, 1))
    try:
        compile_graph(strategy1, strategy2, strategy3, strategy4)
    except:
        pass


def test_onehot_repeated_calculation():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
113
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    strategy3 = ((4, 1), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4)


def test_onehot_auto():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = None
    strategy2 = None
    strategy3 = None
    strategy4 = None
    compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True)


def test_onehot_model_parallel():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
131
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
132 133 134 135 136 137 138 139
    strategy3 = ((1, 16), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4)


def test_onehot_batch_parallel_axis0():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
140
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
141 142 143 144 145 146 147 148 149
    strategy3 = ((16, 1), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)


# auto parallel for onehot axis equal to 0 has not been supported yet
def test_onehot_batch_parallel_invalid_strategy_axis0():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
150
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
151 152 153 154 155 156 157 158 159 160 161
    strategy3 = None
    strategy4 = ((16, 1), (16, 1))
    try:
        compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
    except:
        pass


def test_onehot_repeated_calculation_axis0():
    context.set_auto_parallel_context(device_num=16, global_rank=0)
    strategy1 = ((2, 4), (4, 2))
J
jinyaohui 已提交
162
    strategy2 = ((2, 8),)
Z
zhunaipan 已提交
163 164 165 166 167 168 169 170 171 172 173 174
    strategy3 = ((4, 1), (), ())
    strategy4 = ((16, 1), (16, 1))
    compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)


def test_onehot_auto_axis0():
    context.set_auto_parallel_context(device_num=16, global_rank=14)
    strategy1 = None
    strategy2 = None
    strategy3 = None
    strategy4 = None
    compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True, onthot_axis=0)