voc_op_test.cc 6.7 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/**
 * Copyright 2019 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <fstream>
#include <iostream>
#include <memory>
#include <string>

#include "common/common.h"
L
liubuyu 已提交
22
#include "utils/ms_utils.h"
L
liubuyu 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include "minddata/dataset/core/client.h"
#include "minddata/dataset/core/global_context.h"
#include "minddata/dataset/engine/datasetops/source/voc_op.h"
#include "minddata/dataset/engine/datasetops/source/sampler/distributed_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/pk_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/random_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/weighted_random_sampler.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/util/status.h"
Z
zhunaipan 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include "securec.h"

namespace common = mindspore::common;

using namespace mindspore::dataset;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;

std::shared_ptr<BatchOp> Batch(int batch_size = 1, bool drop = false, int rows_per_buf = 2);

std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);

std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);

X
xiefangqi 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
class MindDataTestVOCOp : public UT::DatasetOpTesting {
 protected:
};

TEST_F(MindDataTestVOCOp, TestVOCDetection) {
  // Start with an empty execution tree
  auto my_tree = std::make_shared<ExecutionTree>();
  std::string dataset_path;
  dataset_path = datasets_root_path_ + "/testVOC2012";

  std::string task_type("Detection");
  std::string task_mode("train");
  std::shared_ptr<VOCOp> my_voc_op;
Z
zhunaipan 已提交
65
  VOCOp::Builder builder;
Z
Zirui Wu 已提交
66
  Status rc = builder.SetDir(dataset_path).SetTask(task_type).SetUsage(task_mode)
X
xiefangqi 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                     .Build(&my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->AssociateNode(my_voc_op);
  ASSERT_TRUE(rc.IsOk());
  rc = my_tree->AssignRoot(my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  MS_LOG(DEBUG) << "Launch tree and begin iteration.";
  rc = my_tree->Prepare();
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->Launch();
  ASSERT_TRUE(rc.IsOk());

  // Start the loop of reading tensors from our pipeline
  DatasetIterator di(my_tree);
  TensorRow tensor_list;
  rc = di.FetchNextTensorRow(&tensor_list);
  ASSERT_TRUE(rc.IsOk());

  int row_count = 0;
  while (!tensor_list.empty()) {
    MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";

    //Display the tensor by calling the printer on it
    for (int i = 0; i < tensor_list.size(); i++) {
      std::ostringstream ss;
      ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
      MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
    }

    rc = di.FetchNextTensorRow(&tensor_list);
    ASSERT_TRUE(rc.IsOk());
    row_count++;
  }

  ASSERT_EQ(row_count, 9);
Z
zhunaipan 已提交
105 106
}

X
xiefangqi 已提交
107 108 109 110 111 112 113 114 115 116
TEST_F(MindDataTestVOCOp, TestVOCSegmentation) {
  // Start with an empty execution tree
  auto my_tree = std::make_shared<ExecutionTree>();
  std::string dataset_path;
  dataset_path = datasets_root_path_ + "/testVOC2012";

  std::string task_type("Segmentation");
  std::string task_mode("train");
  std::shared_ptr<VOCOp> my_voc_op;
  VOCOp::Builder builder;
Z
Zirui Wu 已提交
117
  Status rc = builder.SetDir(dataset_path).SetTask(task_type).SetUsage(task_mode)
X
xiefangqi 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
                     .Build(&my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->AssociateNode(my_voc_op);
  ASSERT_TRUE(rc.IsOk());
  rc = my_tree->AssignRoot(my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  MS_LOG(DEBUG) << "Launch tree and begin iteration.";
  rc = my_tree->Prepare();
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->Launch();
  ASSERT_TRUE(rc.IsOk());

  // Start the loop of reading tensors from our pipeline
  DatasetIterator di(my_tree);
  TensorRow tensor_list;
  rc = di.FetchNextTensorRow(&tensor_list);
  ASSERT_TRUE(rc.IsOk());

  int row_count = 0;
  while (!tensor_list.empty()) {
    MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";

    //Display the tensor by calling the printer on it
    for (int i = 0; i < tensor_list.size(); i++) {
      std::ostringstream ss;
      ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
      MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
    }

    rc = di.FetchNextTensorRow(&tensor_list);
    ASSERT_TRUE(rc.IsOk());
    row_count++;
  }

  ASSERT_EQ(row_count, 10);
}

TEST_F(MindDataTestVOCOp, TestVOCClassIndex) {
  // Start with an empty execution tree
  auto my_tree = std::make_shared<ExecutionTree>();
  std::string dataset_path;
  dataset_path = datasets_root_path_ + "/testVOC2012";

  std::string task_type("Detection");
  std::string task_mode("train");
  std::map<std::string, int32_t> class_index;
  class_index["car"] = 0;
  class_index["cat"] = 1;
  class_index["train"] = 5;
  std::shared_ptr<VOCOp> my_voc_op;
  VOCOp::Builder builder;
Z
Zirui Wu 已提交
172 173
  Status rc =
    builder.SetDir(dataset_path).SetTask(task_type).SetUsage(task_mode)
X
xiefangqi 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                     .SetClassIndex(class_index)
                     .Build(&my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->AssociateNode(my_voc_op);
  ASSERT_TRUE(rc.IsOk());
  rc = my_tree->AssignRoot(my_voc_op);
  ASSERT_TRUE(rc.IsOk());

  MS_LOG(DEBUG) << "Launch tree and begin iteration.";
  rc = my_tree->Prepare();
  ASSERT_TRUE(rc.IsOk());

  rc = my_tree->Launch();
  ASSERT_TRUE(rc.IsOk());

  // Start the loop of reading tensors from our pipeline
  DatasetIterator di(my_tree);
  TensorRow tensor_list;
  rc = di.FetchNextTensorRow(&tensor_list);
  ASSERT_TRUE(rc.IsOk());

  int row_count = 0;
  while (!tensor_list.empty()) {
    MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";

    //Display the tensor by calling the printer on it
    for (int i = 0; i < tensor_list.size(); i++) {
      std::ostringstream ss;
      ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
      MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
    }

    rc = di.FetchNextTensorRow(&tensor_list);
    ASSERT_TRUE(rc.IsOk());
    row_count++;
  }

  ASSERT_EQ(row_count, 6);
}