test_gather_v2_primitive.py 7.9 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.ops import composite as C
from mindspore.common.parameter import ParameterTuple
from mindspore.nn.optim import Momentum
from mindspore.communication.management import init
from mindspore.train import Model, ParallelMode
import mindspore as ms
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.nn.loss.loss import _Loss
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.nn import Dense, Cell
from mindspore import context

context.set_context(mode=context.GRAPH_MODE)
32 33
device_number = 32
batch_size_per_device = 128
Z
zhunaipan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


class Dataset():
    def __init__(self, predict, length=3):
        self.predict = predict
        self.index = 0
        self.length = length

    def __iter__(self):
        return self

    def __next__(self):
        if self.index >= self.length:
            raise StopIteration
        self.index += 1
        return (self.predict,)

    def reset(self):
        self.index = 0

    def get_dataset_size(self):
        return 128

    def get_repeat_count(self):
        return 1


class GatherV2(_Loss):
62
    def __init__(self, index_dim, strategy, index_size=16):
Z
zhunaipan 已提交
63 64
        super(GatherV2, self).__init__()
        self.pow = P.Pow()
65 66 67 68 69 70 71 72 73 74
        emb1_list = 21
        emb2_list = 2
        if index_dim == 1:
            emb_list = list(range(index_size))
            emb1_list = emb_list[0::2]
            emb2_list = emb_list[1::2]
        if index_dim == 2:
            emb_list = np.arange(index_size*16)
            emb1_list = np.reshape(emb_list[0::2], (int(index_size/2), 16))
            emb2_list = np.reshape(emb_list[1::2], (int(index_size/2), 16))
Z
zhunaipan 已提交
75 76
        self.emb1_param = Tensor(emb1_list, dtype=mstype.int32)
        self.emb2_param = Tensor(emb2_list, dtype=mstype.int32)
77
        self.gatherv2 = P.GatherV2().set_strategy(strategy)
Z
zhunaipan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def construct(self, nembeddings):
        emb1 = self.gatherv2(nembeddings, self.emb1_param, 0)
        emb2 = self.gatherv2(nembeddings, self.emb2_param, 0)
        return self.pow((emb1 - emb2), 2.0)


def fc_with_initialize(input_channels, out_channels):
    return Dense(input_channels, out_channels)


class BuildTrainNetwork(nn.Cell):
    def __init__(self, network, criterion):
        super(BuildTrainNetwork, self).__init__()
        self.network = network
        self.criterion = criterion

    def construct(self, input_data):
        embeddings = self.network(input_data)
        loss = self.criterion(embeddings)
        return loss


class TrainOneStepCell(Cell):
    def __init__(self, network, optimizer, sens=1.0):
        super(TrainOneStepCell, self).__init__(auto_prefix=False)
        self.network = network
        self.network.add_flags(defer_inline=True)
        self.weights = ParameterTuple(network.trainable_params())
        self.optimizer = optimizer
        self.grad = C.GradOperation('grad',
                                    get_by_list=True,
                                    sens_param=True)
        self.sens = sens

    def construct(self, data):
        weights = self.weights
        loss = self.network(data)
        sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
        grads = self.grad(self.network, weights)(data, sens)

        return F.depend(loss, self.optimizer(grads))


122
def net_trains(gather_v2_strategy, criterion, rank):
Z
zhunaipan 已提交
123 124 125 126 127 128
    init()
    lr = 0.1
    momentum = 0.9
    max_epoch = 20
    input_channels = 256
    out_channels = 512
129
    context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
Z
zhunaipan 已提交
130
    context.reset_auto_parallel_context()
131 132
    context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_number,
                                      global_rank=rank)
Z
zhunaipan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    predict = Tensor(np.ones([batch_size_per_device, input_channels]), dtype=ms.float32)
    dataset = Dataset(predict, 4)

    network = fc_with_initialize(input_channels, out_channels)
    network.set_train()

    train_network = BuildTrainNetwork(network, criterion)
    train_network.set_train()
    opt = Momentum(train_network.trainable_params(), lr, momentum)
    train_net = TrainOneStepCell(train_network, opt).set_train()

    model = Model(train_net)
    model.train(max_epoch, dataset, dataset_sink_mode=False)
    context.reset_auto_parallel_context()

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

def test_auto_batch_parallel():
    gather_v2_strategy = None
    criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    rank = 2
    net_trains(gather_v2_strategy, criterion, rank)


def test_2d_index_auto_batch_parallel():
    gather_v2_strategy = None
    criterion = GatherV2(2, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    rank = 2
    net_trains(gather_v2_strategy, criterion, rank)


def test_batch_parallel():
    gather_v2_strategy = ((device_number, 1),)
    criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    rank = 2
    net_trains(gather_v2_strategy, criterion, rank)


def test_strategy1():
    gather_v2_strategy = ((16, 2),)
    rank = 2
    criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    net_trains(gather_v2_strategy, criterion, rank)


def test_strategy2():
    gather_v2_strategy = ((1, device_number),)
    rank = 2
    criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    net_trains(gather_v2_strategy, criterion, rank)


def test_strategy3():
    gather_v2_strategy = ((8, 1),)
    rank = 2
    criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number)
    net_trains(gather_v2_strategy, criterion, rank)


class GatherV2Axis1(_Loss):
    def __init__(self, index_dim, strategy, index_size=16):
        super(GatherV2Axis1, self).__init__()
        self.pow = P.Pow()
        emb1_list = 21
        emb2_list = 2
        if index_dim == 1:
            emb_list = list(range(index_size))
            emb1_list = emb_list[0::2]
            emb2_list = emb_list[1::2]
        if index_dim == 2:
            emb_list = np.arange(index_size*index_size)
            emb1_list = np.reshape(emb_list[0::2], (int(index_size/2), index_size))
            emb2_list = np.reshape(emb_list[1::2], (int(index_size/2), index_size))
        self.emb1_param = Tensor(emb1_list, dtype=mstype.int32)
        self.emb2_param = Tensor(emb2_list, dtype=mstype.int32)
        self.gatherv2 = P.GatherV2().set_strategy(strategy)

    def construct(self, nembeddings):
        emb1 = self.gatherv2(nembeddings, self.emb1_param, 1)
        emb2 = self.gatherv2(nembeddings, self.emb2_param, 1)
        return self.pow((emb1 - emb2), 2.0)


def test_axis1_auto_batch_parallel():
    gather_v2_strategy = None
    criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512)
    rank = 2
    net_trains(gather_v2_strategy, criterion, rank)


def test_axis1_batch_parallel():
    gather_v2_strategy = ((device_number, 1),)
    criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512)
    rank = 2
    net_trains(gather_v2_strategy, criterion, rank)


def test_axis1_strategy1():
    gather_v2_strategy = ((16, 2),)
    rank = 17
    criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512)
    net_trains(gather_v2_strategy, criterion, rank)