vgg.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
15 16 17 18
"""
Image classifiation.
"""
import math
19 20
import mindspore.nn as nn
import mindspore.common.dtype as mstype
21 22 23 24
from mindspore.common import initializer as init
from mindspore.common.initializer import initializer
from .utils.var_init import default_recurisive_init, KaimingNormal

25

26
def _make_layer(base, args, batch_norm):
27 28 29 30 31 32 33
    """Make stage network of VGG."""
    layers = []
    in_channels = 3
    for v in base:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
34 35 36 37 38
            weight = 'ones'
            if args.initialize_mode == "XavierUniform":
                weight_shape = (v, in_channels, 3, 3)
                weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()

39 40 41
            conv2d = nn.Conv2d(in_channels=in_channels,
                               out_channels=v,
                               kernel_size=3,
42 43 44
                               padding=args.padding,
                               pad_mode=args.pad_mode,
                               has_bias=args.has_bias,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
                               weight_init=weight)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
            else:
                layers += [conv2d, nn.ReLU()]
            in_channels = v
    return nn.SequentialCell(layers)


class Vgg(nn.Cell):
    """
    VGG network definition.

    Args:
        base (list): Configuration for different layers, mainly the channel number of Conv layer.
        num_classes (int): Class numbers. Default: 1000.
        batch_norm (bool): Whether to do the batchnorm. Default: False.
        batch_size (int): Batch size. Default: 1.

    Returns:
        Tensor, infer output tensor.

    Examples:
        >>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
        >>>     num_classes=1000, batch_norm=False, batch_size=1)
    """

72
    def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train"):
73 74
        super(Vgg, self).__init__()
        _ = batch_size
75
        self.layers = _make_layer(base, args, batch_norm=batch_norm)
76
        self.flatten = nn.Flatten()
77 78 79
        dropout_ratio = 0.5
        if not args.has_dropout or phase == "test":
            dropout_ratio = 1.0
80 81 82
        self.classifier = nn.SequentialCell([
            nn.Dense(512 * 7 * 7, 4096),
            nn.ReLU(),
83
            nn.Dropout(dropout_ratio),
84 85
            nn.Dense(4096, 4096),
            nn.ReLU(),
86
            nn.Dropout(dropout_ratio),
87
            nn.Dense(4096, num_classes)])
88 89 90
        if args.initialize_mode == "KaimingNormal":
            default_recurisive_init(self)
            self.custom_init_weight()
91 92 93 94 95 96 97

    def construct(self, x):
        x = self.layers(x)
        x = self.flatten(x)
        x = self.classifier(x)
        return x

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def custom_init_weight(self):
        """
        Init the weight of Conv2d and Dense in the net.
        """
        for _, cell in self.cells_and_names():
            if isinstance(cell, nn.Conv2d):
                cell.weight.default_input = init.initializer(
                    KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'),
                    cell.weight.shape, cell.weight.dtype)
                if cell.bias is not None:
                    cell.bias.default_input = init.initializer(
                        'zeros', cell.bias.shape, cell.bias.dtype)
            elif isinstance(cell, nn.Dense):
                cell.weight.default_input = init.initializer(
                    init.Normal(0.01), cell.weight.shape, cell.weight.dtype)
                if cell.bias is not None:
                    cell.bias.default_input = init.initializer(
                        'zeros', cell.bias.shape, cell.bias.dtype)

117 118 119 120 121 122 123 124 125

cfg = {
    '11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    '13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    '16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    '19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


126
def vgg16(num_classes=1000, args=None, phase="train"):
127 128 129 130 131
    """
    Get Vgg16 neural network with batch normalization.

    Args:
        num_classes (int): Class numbers. Default: 1000.
132 133
        args(namespace): param for net init.
        phase(str): train or test mode.
134 135 136 137 138

    Returns:
        Cell, cell instance of Vgg16 neural network with batch normalization.

    Examples:
139
        >>> vgg16(num_classes=1000, args=args)
140 141
    """

142 143 144 145
    if args is None:
        from .config import cifar_cfg
        args = cifar_cfg
    net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase)
146
    return net