test_cpu_lenet.py 2.9 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore.nn import TrainOneStepCell, WithLossCell
import mindspore.context as context
from mindspore.nn.optim import Momentum
K
kswang 已提交
19 20 21 22 23
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor

B
buxue 已提交
24

K
kswang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
class LeNet(nn.Cell):
    def __init__(self):
        super(LeNet, self).__init__()
        self.relu = P.ReLU()
        self.batch_size = 32

        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.reshape = P.Reshape()
        self.fc1 = nn.Dense(400, 120)
        self.fc2 = nn.Dense(120, 84)
        self.fc3 = nn.Dense(84, 10)

    def construct(self, input_x):
        output = self.conv1(input_x)
        output = self.relu(output)
        output = self.pool(output)
        output = self.conv2(output)
        output = self.relu(output)
        output = self.pool(output)
        output = self.reshape(output, (self.batch_size, -1))
        output = self.fc1(output)
        output = self.relu(output)
        output = self.fc2(output)
        output = self.relu(output)
        output = self.fc3(output)
        return output

B
buxue 已提交
54

Z
zhunaipan 已提交
55 56
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")

B
buxue 已提交
57

Z
zhunaipan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def train(net, data, label):
    learning_rate = 0.01
    momentum = 0.9

    optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
    criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    net_with_criterion = WithLossCell(net, criterion)
    train_network = TrainOneStepCell(net_with_criterion, optimizer)  # optimizer
    train_network.set_train()
    res = train_network(data, label)
    print("+++++++++Loss+++++++++++++")
    print(res)
    print("+++++++++++++++++++++++++++")
    assert res

B
buxue 已提交
73

Z
zhunaipan 已提交
74 75 76 77
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_lenet():
B
buxue 已提交
78
    data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
Z
zhunaipan 已提交
79 80 81
    label = Tensor(np.ones([32]).astype(np.int32))
    net = LeNet()
    train(net, data, label)