dataset.py 21.0 KB
Newer Older
M
meixiaowei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""MaskRcnn dataset"""
from __future__ import division

import os
import numpy as np
from numpy import random

import mmcv
import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C
from mindspore.mindrecord import FileWriter
from src.config import config
import cv2

def bbox_overlaps(bboxes1, bboxes2, mode='iou'):
    """Calculate the ious between each bbox of bboxes1 and bboxes2.

    Args:
        bboxes1(ndarray): shape (n, 4)
        bboxes2(ndarray): shape (k, 4)
        mode(str): iou (intersection over union) or iof (intersection
            over foreground)

    Returns:
        ious(ndarray): shape (n, k)
    """

    assert mode in ['iou', 'iof']

    bboxes1 = bboxes1.astype(np.float32)
    bboxes2 = bboxes2.astype(np.float32)
    rows = bboxes1.shape[0]
    cols = bboxes2.shape[0]
    ious = np.zeros((rows, cols), dtype=np.float32)
    if rows * cols == 0:
        return ious
    exchange = False
    if bboxes1.shape[0] > bboxes2.shape[0]:
        bboxes1, bboxes2 = bboxes2, bboxes1
        ious = np.zeros((cols, rows), dtype=np.float32)
        exchange = True
    area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1)
    area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1)
    for i in range(bboxes1.shape[0]):
        x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
        y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
        x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
        y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
        overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum(
            y_end - y_start + 1, 0)
        if mode == 'iou':
            union = area1[i] + area2 - overlap
        else:
            union = area1[i] if not exchange else area2
        ious[i, :] = overlap / union
    if exchange:
        ious = ious.T
    return ious

class PhotoMetricDistortion:
    """Photo Metric Distortion"""
    def __init__(self,
                 brightness_delta=32,
                 contrast_range=(0.5, 1.5),
                 saturation_range=(0.5, 1.5),
                 hue_delta=18):
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    def __call__(self, img, boxes, labels):
        # random brightness
        img = img.astype('float32')

        if random.randint(2):
            delta = random.uniform(-self.brightness_delta,
                                   self.brightness_delta)
            img += delta

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = random.randint(2)
        if mode == 1:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if random.randint(2):
            img[..., 1] *= random.uniform(self.saturation_lower,
                                          self.saturation_upper)

        # random hue
        if random.randint(2):
            img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # randomly swap channels
        if random.randint(2):
            img = img[..., random.permutation(3)]

        return img, boxes, labels

class Expand:
    """expand image"""
    def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4)):
        if to_rgb:
            self.mean = mean[::-1]
        else:
            self.mean = mean
        self.min_ratio, self.max_ratio = ratio_range

    def __call__(self, img, boxes, labels, mask):
        if random.randint(2):
            return img, boxes, labels, mask

        h, w, c = img.shape
        ratio = random.uniform(self.min_ratio, self.max_ratio)
        expand_img = np.full((int(h * ratio), int(w * ratio), c),
                             self.mean).astype(img.dtype)
        left = int(random.uniform(0, w * ratio - w))
        top = int(random.uniform(0, h * ratio - h))
        expand_img[top:top + h, left:left + w] = img
        img = expand_img
        boxes += np.tile((left, top), 2)

        mask_count, mask_h, mask_w = mask.shape
        expand_mask = np.zeros((mask_count, int(mask_h * ratio), int(mask_w * ratio))).astype(mask.dtype)
        expand_mask[:, top:top + h, left:left + w] = mask
        mask = expand_mask

        return img, boxes, labels, mask

def rescale_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """rescale operation for image"""
    img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
    if img_data.shape[0] > config.img_height:
        img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
        scale_factor = scale_factor*scale_factor2

    gt_bboxes = gt_bboxes * scale_factor
    gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1)
    gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1)

    gt_mask_data = np.array([
        mmcv.imrescale(mask, scale_factor, interpolation='nearest')
        for mask in gt_mask
    ])

    pad_h = config.img_height - img_data.shape[0]
    pad_w = config.img_width - img_data.shape[1]
    assert ((pad_h >= 0) and (pad_w >= 0))

    pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
    pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data

    mask_count, mask_h, mask_w = gt_mask_data.shape
    pad_mask = np.zeros((mask_count, config.img_height, config.img_width)).astype(gt_mask_data.dtype)
    pad_mask[:, 0:mask_h, 0:mask_w] = gt_mask_data

    img_shape = (config.img_height, config.img_width, 1.0)
    img_shape = np.asarray(img_shape, dtype=np.float32)

    return  (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num, pad_mask)

def rescale_column_test(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """rescale operation for image of eval"""
    img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
    if img_data.shape[0] > config.img_height:
        img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
        scale_factor = scale_factor*scale_factor2

    pad_h = config.img_height - img_data.shape[0]
    pad_w = config.img_width - img_data.shape[1]
    assert ((pad_h >= 0) and (pad_w >= 0))

    pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
    pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data

    img_shape = np.append(img_shape, (scale_factor, scale_factor))
    img_shape = np.asarray(img_shape, dtype=np.float32)

    return  (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def resize_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """resize operation for image"""
    img_data = img
    img_data, w_scale, h_scale = mmcv.imresize(
        img_data, (config.img_width, config.img_height), return_scale=True)
    scale_factor = np.array(
        [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
    img_shape = (config.img_height, config.img_width, 1.0)
    img_shape = np.asarray(img_shape, dtype=np.float32)

    gt_bboxes = gt_bboxes * scale_factor
    gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) # x1, x2   [0, W-1]
    gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) # y1, y2   [0, H-1]

    gt_mask_data = np.array([
        mmcv.imresize(mask, (config.img_width, config.img_height), interpolation='nearest')
        for mask in gt_mask
    ])
    return  (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask_data)

def resize_column_test(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """resize operation for image of eval"""
    img_data = img
    img_data, w_scale, h_scale = mmcv.imresize(
        img_data, (config.img_width, config.img_height), return_scale=True)
    img_shape = np.append(img_shape, (h_scale, w_scale))
    img_shape = np.asarray(img_shape, dtype=np.float32)

    return  (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def impad_to_multiple_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """impad operation for image"""
    img_data = mmcv.impad(img, (config.img_height, config.img_width))
    img_data = img_data.astype(np.float32)
    return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """imnormalize operation for image"""
    img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53], [58.395, 57.12, 57.375], True)
    img_data = img_data.astype(np.float32)
    return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """flip operation for image"""
    img_data = img
    img_data = mmcv.imflip(img_data)
    flipped = gt_bboxes.copy()
    _, w, _ = img_data.shape

    flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1  # x1 = W-x2-1
    flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1  # x2 = W-x1-1

    gt_mask_data = np.array([mask[:, ::-1] for mask in gt_mask])

    return  (img_data, img_shape, flipped, gt_label, gt_num, gt_mask_data)

def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """transpose operation for image"""
    img_data = img.transpose(2, 0, 1).copy()
    img_data = img_data.astype(np.float16)
    img_shape = img_shape.astype(np.float16)
    gt_bboxes = gt_bboxes.astype(np.float16)
    gt_label = gt_label.astype(np.int32)
    gt_num = gt_num.astype(np.bool)
    gt_mask_data = gt_mask.astype(np.bool)

    return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask_data)

def photo_crop_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """photo crop operation for image"""
    random_photo = PhotoMetricDistortion()
    img_data, gt_bboxes, gt_label = random_photo(img, gt_bboxes, gt_label)

    return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def expand_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
    """expand operation for image"""
    expand = Expand()
    img, gt_bboxes, gt_label, gt_mask = expand(img, gt_bboxes, gt_label, gt_mask)

    return (img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)

def pad_to_max(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask, instance_count):
    pad_max_number = config.max_instance_count
    gt_box_new = np.pad(gt_bboxes, ((0, pad_max_number - instance_count), (0, 0)), mode="constant", constant_values=0)
    gt_label_new = np.pad(gt_label, ((0, pad_max_number - instance_count)), mode="constant", constant_values=-1)
    gt_iscrowd_new = np.pad(gt_num, ((0, pad_max_number - instance_count)), mode="constant", constant_values=1)
    gt_iscrowd_new_revert = ~(gt_iscrowd_new.astype(np.bool))
    gt_mask_new = np.pad(gt_mask, ((0, pad_max_number - instance_count), (0, 0), (0, 0)), mode="constant",
                         constant_values=0)

    return img, img_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert, gt_mask_new

def preprocess_fn(image, box, mask, mask_shape, is_training):
    """Preprocess function for dataset."""
    def _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert,
                    gt_mask_new, instance_count):
        image_shape = image_shape[:2]
        input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert, gt_mask_new

        if config.keep_ratio:
            input_data = rescale_column_test(*input_data)
        else:
            input_data = resize_column_test(*input_data)
        input_data = imnormalize_column(*input_data)

        input_data = pad_to_max(*input_data, instance_count)
        output_data = transpose_column(*input_data)
        return output_data

    def _data_aug(image, box, mask, mask_shape, is_training):
        """Data augmentation function."""
        image_bgr = image.copy()
        image_bgr[:, :, 0] = image[:, :, 2]
        image_bgr[:, :, 1] = image[:, :, 1]
        image_bgr[:, :, 2] = image[:, :, 0]
        image_shape = image_bgr.shape[:2]
        instance_count = box.shape[0]
        gt_box = box[:, :4]
        gt_label = box[:, 4]
        gt_iscrowd = box[:, 5]
        gt_mask = mask.copy()
        n, h, w = mask_shape
        gt_mask = gt_mask.reshape(n, h, w)
        assert n == box.shape[0]

        if not is_training:
            return _infer_data(image_bgr, image_shape, gt_box, gt_label, gt_iscrowd, gt_mask, instance_count)

        flip = (np.random.rand() < config.flip_ratio)
        expand = (np.random.rand() < config.expand_ratio)

        input_data = image_bgr, image_shape, gt_box, gt_label, gt_iscrowd, gt_mask

        if expand:
            input_data = expand_column(*input_data)
        if config.keep_ratio:
            input_data = rescale_column(*input_data)
        else:
            input_data = resize_column(*input_data)

        input_data = imnormalize_column(*input_data)
        if flip:
            input_data = flip_column(*input_data)

        input_data = pad_to_max(*input_data, instance_count)
        output_data = transpose_column(*input_data)
        return output_data

    return _data_aug(image, box, mask, mask_shape, is_training)

def annToMask(ann, height, width):
    """Convert annotation to RLE and then to binary mask."""
    from pycocotools import mask as maskHelper
    segm = ann['segmentation']
    if isinstance(segm, list):
        rles = maskHelper.frPyObjects(segm, height, width)
        rle = maskHelper.merge(rles)
    elif isinstance(segm['counts'], list):
        rle = maskHelper.frPyObjects(segm, height, width)
    else:
        rle = ann['segmentation']
    m = maskHelper.decode(rle)
    return m

def create_coco_label(is_training):
    """Get image path and annotation from COCO."""
    from pycocotools.coco import COCO

    coco_root = config.coco_root
    data_type = config.val_data_type
    if is_training:
        data_type = config.train_data_type

    #Classes need to train or test.
    train_cls = config.coco_classes
    train_cls_dict = {}
    for i, cls in enumerate(train_cls):
        train_cls_dict[cls] = i

    anno_json = os.path.join(coco_root, config.instance_set.format(data_type))

    coco = COCO(anno_json)
    classs_dict = {}
    cat_ids = coco.loadCats(coco.getCatIds())
    for cat in cat_ids:
        classs_dict[cat["id"]] = cat["name"]

    image_ids = coco.getImgIds()
    image_files = []
    image_anno_dict = {}
    masks = {}
    masks_shape = {}
    for img_id in image_ids:
        image_info = coco.loadImgs(img_id)
        file_name = image_info[0]["file_name"]
        anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
        anno = coco.loadAnns(anno_ids)
        image_path = os.path.join(coco_root, data_type, file_name)
        annos = []
        instance_masks = []
        image_height = coco.imgs[img_id]["height"]
        image_width = coco.imgs[img_id]["width"]
        print("image file name: ", file_name)
        if not is_training:
            image_files.append(image_path)
            image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1])
            masks[image_path] = np.zeros([1, 1, 1], dtype=np.bool).tobytes()
            masks_shape[image_path] = np.array([1, 1, 1], dtype=np.int32)
        else:
            for label in anno:
                bbox = label["bbox"]
                class_name = classs_dict[label["category_id"]]
                if class_name in train_cls:
                    # get coco mask
                    m = annToMask(label, image_height, image_width)
                    if m.max() < 1:
                        print("all black mask!!!!")
                        continue
                    # Resize mask for the crowd
                    if label['iscrowd'] and (m.shape[0] != image_height or m.shape[1] != image_width):
                        m = np.ones([image_height, image_width], dtype=np.bool)
                    instance_masks.append(m)

                    # get coco bbox
                    x1, x2 = bbox[0], bbox[0] + bbox[2]
                    y1, y2 = bbox[1], bbox[1] + bbox[3]
                    annos.append([x1, y1, x2, y2] + [train_cls_dict[class_name]] + [int(label["iscrowd"])])
                else:
                    print("not in classes: ", class_name)

            image_files.append(image_path)
            if annos:
                image_anno_dict[image_path] = np.array(annos)
                instance_masks = np.stack(instance_masks, axis=0).astype(np.bool)
                masks[image_path] = np.array(instance_masks).tobytes()
                masks_shape[image_path] = np.array(instance_masks.shape, dtype=np.int32)
            else:
                print("no annotations for image ", file_name)
                image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1])
                masks[image_path] = np.zeros([1, image_height, image_width], dtype=np.bool).tobytes()
                masks_shape[image_path] = np.array([1, image_height, image_width], dtype=np.int32)

    return image_files, image_anno_dict, masks, masks_shape

def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="maskrcnn.mindrecord", file_num=8):
    """Create MindRecord file."""
    mindrecord_dir = config.mindrecord_dir
    mindrecord_path = os.path.join(mindrecord_dir, prefix)

    writer = FileWriter(mindrecord_path, file_num)
    if dataset == "coco":
        image_files, image_anno_dict, masks, masks_shape = create_coco_label(is_training)
    else:
        print("Error unsupport other dataset")
        return

    maskrcnn_json = {
        "image": {"type": "bytes"},
        "annotation": {"type": "int32", "shape": [-1, 6]},
        "mask": {"type": "bytes"},
        "mask_shape": {"type": "int32", "shape": [-1]},
    }
    writer.add_schema(maskrcnn_json, "maskrcnn_json")

    for image_name in image_files:
        with open(image_name, 'rb') as f:
            img = f.read()
        annos = np.array(image_anno_dict[image_name], dtype=np.int32)
        mask = masks[image_name]
        mask_shape = masks_shape[image_name]
        row = {"image": img, "annotation": annos, "mask": mask, "mask_shape": mask_shape}
        writer.write_raw_data([row])
    writer.commit()

def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id=0,
                            is_training=True, num_parallel_workers=8):
    """Create MaskRcnn dataset with MindDataset."""
    cv2.setNumThreads(0)
    de.config.set_prefetch_size(8)
    ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation", "mask", "mask_shape"],
                        num_shards=device_num, shard_id=rank_id,
                        num_parallel_workers=4, shuffle=is_training)

    decode = C.Decode()
    ds = ds.map(input_columns=["image"], operations=decode)
    compose_map_func = (lambda image, annotation, mask, mask_shape:
                        preprocess_fn(image, annotation, mask, mask_shape, is_training))

    if is_training:
        ds = ds.map(input_columns=["image", "annotation", "mask", "mask_shape"],
                    output_columns=["image", "image_shape", "box", "label", "valid_num", "mask"],
                    columns_order=["image", "image_shape", "box", "label", "valid_num", "mask"],
                    operations=compose_map_func,
                    python_multiprocessing=False,
                    num_parallel_workers=num_parallel_workers)
        ds = ds.batch(batch_size, drop_remainder=True)

    else:
        ds = ds.map(input_columns=["image", "annotation", "mask", "mask_shape"],
                    output_columns=["image", "image_shape", "box", "label", "valid_num", "mask"],
                    columns_order=["image", "image_shape", "box", "label", "valid_num", "mask"],
                    operations=compose_map_func,
                    num_parallel_workers=num_parallel_workers)
        ds = ds.batch(batch_size, drop_remainder=True)

    return ds