train.py 5.1 KB
Newer Older
M
meixiaowei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
import os
import argparse
import random
import numpy as np
from dataset import create_dataset
from lr_generator import warmup_cosine_annealing_lr
from config import config
from mindspore import context
from mindspore import Tensor
from mindspore.model_zoo.resnet import resnet101
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.loss_scale_manager import FixedLossScaleManager
import mindspore.dataset.engine as de
from mindspore.communication.management import init
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from crossentropy import CrossEntropy

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
args_opt = parser.parse_args()

device_id = int(os.getenv('DEVICE_ID'))

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
context.set_context(enable_task_sink=True)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)

if __name__ == '__main__':
    if args_opt.do_eval:
        context.set_context(enable_hccl=False)
    else:
        if args_opt.run_distribute:
            context.set_context(enable_hccl=True)
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True, parameter_broadcast=True)
            auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
            init()
        else:
            context.set_context(enable_hccl=False)

    epoch_size = config.epoch_size
    net = resnet101(class_num=config.class_num)
    # weight init
    for _, cell in net.cells_and_names():
        if isinstance(cell, nn.Conv2d):
M
meixiaowei 已提交
74 75 76 77 78
            cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
                                                                cell.weight.default_input.shape(),
                                                                cell.weight.default_input.dtype())
        if isinstance(cell, nn.Dense):
            cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
M
meixiaowei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                                                                cell.weight.default_input.shape(),
                                                                cell.weight.default_input.dtype())
    if not config.label_smooth:
        config.label_smooth_factor = 0.0
    loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
    if args_opt.do_train:
        dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
                                 repeat_num=epoch_size, batch_size=config.batch_size)
        step_size = dataset.get_dataset_size()
        loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)

        # learning rate strategy with cosine
        lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
        opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
                       config.weight_decay, config.loss_scale)
M
meixiaowei 已提交
94
        model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
M
meixiaowei 已提交
95 96 97 98 99 100 101 102 103
        time_cb = TimeMonitor(data_size=step_size)
        loss_cb = LossMonitor()
        cb = [time_cb, loss_cb]
        if config.save_checkpoint:
            config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
                                         keep_checkpoint_max=config.keep_checkpoint_max)
            ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
            cb += [ckpt_cb]
        model.train(epoch_size, dataset, callbacks=cb)