test_dataset_interface.py 5.8 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from mindspore.train import Model, ParallelMode
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore import Tensor
import mindspore as ms
import numpy as np
import mindspore.nn as nn
from tests.dataset_mock import MindData
from mindspore import context
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.ops import composite as C, functional as F, operations as P
from mindspore.common.parameter import Parameter, ParameterTuple


context.set_context(mode=context.GRAPH_MODE)


class Dataset(MindData):
    def __init__(self, predict, label, length=3):
        super(Dataset, self).__init__(size=length)
        self.predict = predict
        self.label = label
        self.index = 0
        self.length = length

    def __iter__(self):
        return self

    def __next__(self):
        if self.index >= self.length:
            raise StopIteration
        self.index += 1
        return self.predict, self.label

    def reset(self):
        self.index = 0


class AllToAllNet(nn.Cell):
    def __init__(self, strategy1):
        super(AllToAllNet, self).__init__()
        self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
        self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
        self.transpose1 = P.Transpose().set_strategy(strategy1)

    def construct(self, x):
        x = self.matmul(x, self.matmul_weight)
        x = self.transpose1(x, (1, 0))
        return x


def all_to_all_net(strategy1):
    return AllToAllNet(strategy1=strategy1)


def loss_scale_manager_common(strategy1):
    learning_rate = 0.1
    momentum = 0.9
    epoch_size = 2

    context.reset_auto_parallel_context()
    context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8)
    predict = Tensor(np.ones([32, 128]), dtype=ms.float32)
    label = Tensor(np.ones([32]), dtype=ms.int32)
    dataset = Dataset(predict, label, 2)
    net = all_to_all_net(strategy1)

    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
    opt = Momentum(net.trainable_params(), learning_rate, momentum)
    scale_manager = DynamicLossScaleManager(32, 2, 2000)
    model = Model(net, loss, opt, loss_scale_manager=scale_manager)
W
Wei Luning 已提交
87
    # if no GE exists, outputs = self._train_network(*next_element) outputs inputs tensor.
Z
zhunaipan 已提交
88 89 90 91 92 93 94 95
    try:
        model.train(epoch_size, dataset, dataset_sink_mode=False)
    except TypeError:
        pass
    else:
        assert False


96 97
def fixme_test_dataset_interface_sens_scalar():
    # With error: "The type of sens node is not Tensor or Parameter, it is unsupported now."
Z
zhunaipan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    strategy1 = ((8, 1), )
    loss_scale_manager_common(strategy1)


class TrainOneStepCell(nn.Cell):

    def __init__(self, network, optimizer, sens=1.0):
        super(TrainOneStepCell, self).__init__(auto_prefix=False)
        self.network = network
        self.network.add_flags(defer_inline=True)
        self.weights = ParameterTuple(network.trainable_params())
        self.optimizer = optimizer
        self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)

    def construct(self, data, sens):
        weights = self.weights
        loss = self.network(data)
        grads = self.grad(self.network, weights)(data, sens)
        return F.depend(loss, self.optimizer(grads))


def loss_scale_manager_sens(strategy1, sens):
    learning_rate = 0.1
    momentum = 0.9
    device_num = 8
    context.reset_auto_parallel_context()
    context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
    predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
    net = all_to_all_net(strategy1)
    opt = Momentum(net.trainable_params(), learning_rate, momentum)
    train_net = TrainOneStepCell(net, opt)
    train_net.set_train()
    train_net(predict, sens)


def test_dataset_interface_sens_shape_not_equal_loss():
    strategy1 = ((8, 1), )
    sens = Tensor(np.ones([256, 1024]), dtype=ms.float32)
    try:
        loss_scale_manager_sens(strategy1, sens)
    except:
        pass


def test_dataset_interface_sens_shape_equal_loss():
    strategy1 = ((4, 2), )
    sens = Tensor(np.ones([256, 256]), dtype=ms.float32)
    loss_scale_manager_sens(strategy1, sens)


def test_input_not_in_parameter_layotu_dict():
    class Net(nn.Cell):
        def __init__(self, strategy1):
            super(Net, self).__init__()
            self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
            self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
            self.transpose1 = P.Transpose().set_strategy(strategy1)

        def construct(self, x, b):
            x = self.matmul(x, self.matmul_weight)
            x = self.transpose1(x, (1, 0))
            return x

    strategy1 = ((8, 1), )
    device_num = 8
    context.reset_auto_parallel_context()
    context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
    predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
    b = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
    net = Net(strategy1)
    net.set_train()
    net(predict, b)