test_bn_prelu_cell.py 8.7 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from mindspore.train.model import Model
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore import Tensor
import mindspore as ms
import numpy as np
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.ops import functional as F
from mindspore.nn import WithLossCell
import mindspore.common.dtype as DT
from tests.dataset_mock import MindData
from mindspore.train.parallel_utils import ParallelMode
from mindspore import context


class Dataset(MindData):
    def __init__(self, predict, label, length=3):
        super(Dataset, self).__init__(size=length)
        self.predict = predict
        self.label = label
        self.index = 0
        self.length = length

    def __iter__(self):
        return self

    def __next__(self):
        if self.index >= self.length:
            raise StopIteration
        self.index += 1
        return self.predict, self.label

    def reset(self):
        self.index = 0


class FusedBatchNorm(nn.Cell):
    """Batch Normalization base class."""
    def __init__(self,
                 num_features,
                 eps=1e-5,
                 momentum=0.1,
                 affine=True,
                 gamma_init='ones',
                 beta_init='zeros',
                 moving_mean_init='zeros',
                 moving_var_init='ones'):
        super(FusedBatchNorm, self).__init__()
        if num_features < 1:
            raise ValueError("num_features must be at least 1")

        if momentum < 0 or momentum > 1:
            raise ValueError("momentum should be a number in range [0, 1], but got {}".format(momentum))

        self.num_features = num_features
        self.eps = eps
        self.momentum = Tensor(1.0 - momentum, DT.float32)
        self.gamma = Parameter(initializer(
            gamma_init, num_features), name="gamma", requires_grad=affine)
        self.beta = Parameter(initializer(
            beta_init, num_features), name="beta", requires_grad=affine)
        self.moving_mean = Parameter(initializer(
            moving_mean_init, num_features), name="mean", requires_grad=False)
        self.moving_variance = Parameter(initializer(
            moving_var_init, num_features), name="variance", requires_grad=False)

        self.bn_train = P.BatchNorm(is_training=True,
                                    epsilon=self.eps)
        self.bn_infer = P.BatchNorm(is_training=False,
                                    epsilon=self.eps)
        self.sub_mean = P.Sub().set_strategy(((1), (1)))
        self.sub_var = P.Sub().set_strategy(((1), (1)))
        self.mul_mean = P.Mul().set_strategy(((1, ), ()))
        self.mul_var = P.Mul().set_strategy(((1, ), ()))
        self.assign_sub_mean = P.AssignSub().set_strategy(((1, ), (1,)))
        self.assign_sub_var = P.AssignSub().set_strategy(((1), (1)))
        self.sub_mean2 = P.Sub().set_strategy(((1), (1)))
        self.sub_var2 = P.Sub().set_strategy(((1), (1)))

    def set_strategy(self, strategy):
        self.bn_train.set_strategy(strategy)
        self.bn_infer.set_strategy(strategy)

    def _check_data_dim(self, x):
        raise NotImplementedError

    def construct(self, x):
        if self.training:
            y, batch_mean, batch_var, _, _ = \
                self.bn_train(x,
                              self.gamma,
                              self.beta,
                              None,
                              None)

            mean_sub = self.sub_mean(self.moving_mean, batch_mean)
            temp_mean = self.mul_mean(mean_sub, self.momentum)
            mean_sub2 = self.sub_var(self.moving_variance, batch_var)
            temp_variance = self.mul_var(mean_sub2, self.momentum)
            y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
            y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))

        else:
            y = self.bn_infer(x,
                              self.gamma,
                              self.beta,
                              self.moving_mean,
                              self.moving_variance)[0]
        return y

    def extend_repr(self):
        return 'num_features={}, eps={}, momentum={}, ' \
               'beta={}, gamma={}, ' \
               'moving_mean={}, moving_variance={} ' \
            .format(self.num_features,
                    self.eps,
                    self.momentum,
                    self.beta,
                    self.gamma,
                    self.moving_mean,
                    self.moving_variance)



class PReLU(nn.Cell):
    """
    PReLU activation function.

    Computes prelu value of a 4-dim tensor(NCHW).
    PReLU: out = max(0, A) + min(0, wA)

    Args:
        channel: Integer. The dimensionality of w. Default: 1.
        w: Float. The initial value of w. Default: 0.25.

    Returns:
        Tensor, has the same type as features.

    Examples:
        prelu = nn.PReLU(1, [np.float32(0.25)]) # or prelu = nn.PReLU(33, Tensor(np.random.rand(33), ms.float32)])
        input_data = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
        output = prelu.construct(input_data)
    """
    def __init__(self, channel=1, w=0.25):
        super(PReLU, self).__init__()
        if isinstance(w, (np.float32, float)):
            tmp = np.empty((channel,), dtype=np.float32)
            tmp.fill(w)
            w = tmp
        elif isinstance(w, (int, bool, complex, str)):
            raise TypeError("w only support input type float32 and float")

        if not isinstance(w, Tensor):
            w = Tensor(w)
        self.w = Parameter(initializer(w, [channel,]), name='a')
        self.prelu = P.PReLU()
        self.relu = P.ReLU().set_strategy(((1)))

    def construct(self, x):
        self.w = self.relu(self.w)
        return self.prelu(x, self.w)


class BNNet(nn.Cell):
    def __init__(self, strategy0, strategy1, strategy2):
        super(BNNet, self).__init__()
        self.bn = FusedBatchNorm(512)
        self.prelu = PReLU(512)


    def construct(self, x):
        x = self.bn(x)
        x = self.prelu(x)
        return x


def bn_net(strategy0, strategy1, strategy2):
    return BNNet(strategy0=strategy0, strategy1=strategy1, strategy2=strategy2)


def bn_common(parallel_mode, train_flag, strategy0=None, strategy1=None, strategy2=None, strategy_loss=None):
    context.set_context(mode=context.GRAPH_MODE)
    batch_size = 32
    learning_rate = 0.1
    momentum = 0.9
    epoch_size = 2
    rank_size = 8

    predict = Tensor(np.ones([32, 512]), dtype=ms.float32)
    label = Tensor(np.ones([32]), dtype=ms.int32)
    dataset = Dataset(predict, label, 2)
    net = bn_net(strategy0, strategy1, strategy2)

    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    loss.softmax_cross_entropy.set_strategy(strategy_loss)
    opt = Momentum(net.trainable_params(), learning_rate, momentum, 0.0001, 1024 * rank_size)

    if not train_flag:
        net = WithLossCell(net, loss)
        net.set_train()

    if parallel_mode == ParallelMode.DATA_PARALLEL:
        context.set_auto_parallel_context(parameter_broadcast=True)
    context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
    model = Model(net, loss, opt)
    if train_flag:
        model.train(epoch_size, dataset, dataset_sink_mode=False)
    else:
        model._predict(predict, label)


def test_data_parallel():
    parallel_mode = ParallelMode.DATA_PARALLEL
    train_flag = True
    bn_common(parallel_mode, train_flag)


def auto_parallel():
    train_flag = True
    parallel_mode = ParallelMode.AUTO_PARALLEL
    bn_common(parallel_mode, train_flag)


def Xtest_data_parallel_predict():
    parallel_mode = ParallelMode.DATA_PARALLEL
    train_flag = False
    bn_common(parallel_mode, train_flag)


def Xtest_semi_auto_parallel_predict():
    train_flag = False
    parallel_mode = ParallelMode.SEMI_AUTO_PARALLEL
    bn_common(parallel_mode, train_flag)


def Xtest_auto_parallel_predict():
    train_flag = False
    parallel_mode = ParallelMode.AUTO_PARALLEL
    bn_common(parallel_mode, train_flag)


if __name__ == '__main__':
    auto_parallel()