resnetv1_5.py 9.4 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
J
jinyaohui 已提交
16

Z
zhunaipan 已提交
17
import mindspore.nn as nn
18 19 20
from mindspore import Tensor
from mindspore.ops import operations as P

Z
zhunaipan 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

def weight_variable(shape):
    ones = np.ones(shape).astype(np.float32)
    return Tensor(ones * 0.01)


def weight_variable_0(shape):
    zeros = np.zeros(shape).astype(np.float32)
    return Tensor(zeros)


def weight_variable_1(shape):
    ones = np.ones(shape).astype(np.float32)
    return Tensor(ones)


def conv3x3(in_channels, out_channels, stride=1, padding=0):
    """3x3 convolution """
    weight_shape = (out_channels, in_channels, 3, 3)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
42
                     kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
Z
zhunaipan 已提交
43 44 45 46 47 48 49


def conv1x1(in_channels, out_channels, stride=1, padding=0):
    """1x1 convolution"""
    weight_shape = (out_channels, in_channels, 1, 1)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
50
                     kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
Z
zhunaipan 已提交
51 52 53 54 55 56 57


def conv7x7(in_channels, out_channels, stride=1, padding=0):
    """1x1 convolution"""
    weight_shape = (out_channels, in_channels, 7, 7)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
58
                     kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
Z
zhunaipan 已提交
59 60 61 62 63 64 65 66 67


def bn_with_initialize(out_channels):
    shape = (out_channels)
    mean = weight_variable_0(shape)
    var = weight_variable_1(shape)
    beta = weight_variable_0(shape)
    gamma = weight_variable_1(shape)
    bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
68
                        beta_init=beta, moving_mean_init=mean, moving_var_init=var)
Z
zhunaipan 已提交
69 70 71 72 73 74 75 76 77 78
    return bn


def bn_with_initialize_last(out_channels):
    shape = (out_channels)
    mean = weight_variable_0(shape)
    var = weight_variable_1(shape)
    beta = weight_variable_0(shape)
    gamma = weight_variable_0(shape)
    bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
79
                        beta_init=beta, moving_mean_init=mean, moving_var_init=var)
Z
zhunaipan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    return bn


def fc_with_initialize(input_channels, out_channels):
    weight_shape = (out_channels, input_channels)
    bias_shape = (out_channels)
    weight = weight_variable(weight_shape)
    bias = weight_variable_0(bias_shape)

    return nn.Dense(input_channels, out_channels, weight, bias)


class ResidualBlock(nn.Cell):
    expansion = 4

    def __init__(self,
                 in_channels,
                 out_channels,
L
liubuyu 已提交
98
                 stride=1):
Z
zhunaipan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        super(ResidualBlock, self).__init__()

        out_chls = out_channels // self.expansion
        self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
        self.bn1 = bn_with_initialize(out_chls)

        self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=0)
        self.bn2 = bn_with_initialize(out_chls)

        self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
        self.bn3 = bn_with_initialize_last(out_channels)

        self.relu = P.ReLU()
        self.add = P.TensorAdd()

    def construct(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out = self.add(out, identity)
        out = self.relu(out)

        return out


class ResidualBlockWithDown(nn.Cell):
    expansion = 4

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 down_sample=False):
        super(ResidualBlockWithDown, self).__init__()

        out_chls = out_channels // self.expansion
        self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
        self.bn1 = bn_with_initialize(out_chls)

        self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=0)
        self.bn2 = bn_with_initialize(out_chls)

        self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
        self.bn3 = bn_with_initialize_last(out_channels)

        self.relu = P.ReLU()
        self.downSample = down_sample

        self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
        self.bn_down_sample = bn_with_initialize(out_channels)
        self.add = P.TensorAdd()

    def construct(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        identity = self.conv_down_sample(identity)
        identity = self.bn_down_sample(identity)

        out = self.add(out, identity)
        out = self.relu(out)

        return out


class MakeLayer0(nn.Cell):

L
liubuyu 已提交
186
    def __init__(self, block, in_channels, out_channels, stride):
Z
zhunaipan 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        super(MakeLayer0, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
        self.b = block(out_channels, out_channels, stride=stride)
        self.c = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)

        return x


class MakeLayer1(nn.Cell):

L
liubuyu 已提交
202
    def __init__(self, block, in_channels, out_channels, stride):
Z
zhunaipan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        super(MakeLayer1, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)
        self.d = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)
        x = self.d(x)

        return x


class MakeLayer2(nn.Cell):

L
liubuyu 已提交
220
    def __init__(self, block, in_channels, out_channels, stride):
Z
zhunaipan 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        super(MakeLayer2, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)
        self.d = block(out_channels, out_channels, stride=1)
        self.e = block(out_channels, out_channels, stride=1)
        self.f = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)
        x = self.d(x)
        x = self.e(x)
        x = self.f(x)

        return x


class MakeLayer3(nn.Cell):

L
liubuyu 已提交
242
    def __init__(self, block, in_channels, out_channels, stride):
Z
zhunaipan 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        super(MakeLayer3, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)

        return x


class ResNet(nn.Cell):

L
liubuyu 已提交
258
    def __init__(self, block, num_classes=100, batch_size=32):
Z
zhunaipan 已提交
259 260 261 262 263 264 265 266 267 268
        super(ResNet, self).__init__()
        self.batch_size = batch_size
        self.num_classes = num_classes

        self.conv1 = conv7x7(3, 64, stride=2, padding=0)

        self.bn1 = bn_with_initialize(64)
        self.relu = P.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME")

L
liubuyu 已提交
269 270 271 272
        self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
        self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
        self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
        self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
Z
zhunaipan 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

        self.pool = P.ReduceMean(keep_dims=True)
        self.fc = fc_with_initialize(512 * block.expansion, num_classes)
        self.flatten = nn.Flatten()

    def construct(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.pool(x, (-2, -1))
        x = self.flatten(x)
        x = self.fc(x)
        return x

294

Z
zhunaipan 已提交
295
def resnet50(batch_size, num_classes):
L
liubuyu 已提交
296
    return ResNet(ResidualBlock, num_classes, batch_size)