resnet_cifar_normal.py 6.3 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore import context
import mindspore.common.dtype as mstype
import os
import numpy as np
import mindspore.ops.functional as F
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
27
import mindspore.dataset as de
Z
zhunaipan 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore.communication.management import init
from resnet import resnet50
import random

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

import argparse

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size.')
parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
args_opt = parser.parse_args()

device_id = int(os.getenv('DEVICE_ID'))

data_home = args_opt.dataset_path

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True, device_id=device_id)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=False)


def create_dataset(repeat_num=1, training=True):
    data_dir = data_home + "/cifar-10-batches-bin"
    if not training:
        data_dir = data_home + "/cifar-10-verify-bin"
    ds = de.Cifar10Dataset(data_dir)

    if args_opt.run_distribute:
        rank_id = int(os.getenv('RANK_ID'))
        rank_size = int(os.getenv('RANK_SIZE'))
        ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)

    resize_height = 224
    resize_width = 224
    rescale = 1.0 / 255.0
    shift = 0.0

    # define map operations
    random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4))  # padding_mode default CONSTANT
    random_horizontal_op = vision.RandomHorizontalFlip()
    resize_op = vision.Resize((resize_height, resize_width))  # interpolation default BILINEAR
    rescale_op = vision.Rescale(rescale, shift)
    normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
    changeswap_op = vision.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)

    c_trans = []
    if training:
        c_trans = [random_crop_op, random_horizontal_op]
    c_trans += [resize_op, rescale_op, normalize_op,
                changeswap_op]

    # apply map operations on images
    ds = ds.map(input_columns="label", operations=type_cast_op)
    ds = ds.map(input_columns="image", operations=c_trans)

    # apply repeat operations
    ds = ds.repeat(repeat_num)

    # apply shuffle operations
    ds = ds.shuffle(buffer_size=10)

    # apply batch operations
    ds = ds.batch(batch_size=args_opt.batch_size, drop_remainder=True)

    return ds


class CrossEntropyLoss(nn.Cell):
    def __init__(self):
        super(CrossEntropyLoss, self).__init__()
        self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
        self.mean = P.ReduceMean()
        self.one_hot = P.OneHot()
        self.one = Tensor(1.0, mstype.float32)
        self.zero = Tensor(0.0, mstype.float32)

    def construct(self, logits, label):
        label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
        loss = self.cross_entropy(logits, label)[0]
        loss = self.mean(loss, (-1,))
        return loss


if __name__ == '__main__':
    if args_opt.do_eval:
        context.set_context(enable_hccl=False)
    else:
        if args_opt.run_distribute:
            context.set_context(enable_hccl=True)
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)
            context.set_auto_parallel_context(all_reduce_fusion_split_indices=[140])
            init()
        else:
            context.set_context(enable_hccl=False)

    context.set_context(mode=context.GRAPH_MODE)
    epoch_size = args_opt.epoch_size
    net = resnet50(args_opt.batch_size, args_opt.num_classes)
    loss = CrossEntropyLoss()
    opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)

    model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})

    if args_opt.do_train:
        dataset = create_dataset(epoch_size)
        batch_num = dataset.get_dataset_size()
        config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
        ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
        loss_cb = LossMonitor()
        model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])

    if args_opt.do_eval:
        # if args_opt.checkpoint_path:
        #     param_dict = load_checkpoint(args_opt.checkpoint_path)
        #     load_param_into_net(net, param_dict)
        eval_dataset = create_dataset(1, training=False)
        res = model.eval(eval_dataset)
        print("result: ", res)
    checker = os.path.exists("./normal_memreuse.ir")
    assert (checker, True)