test_gpu_lenet.py 6.2 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

J
jinyaohui 已提交
16
import os
Z
zhunaipan 已提交
17 18
import pytest
import numpy as np
19
from mindspore import Tensor
J
jinyaohui 已提交
20
import mindspore.context as context
Z
zhunaipan 已提交
21
from mindspore.ops import operations as P
J
jinyaohui 已提交
22 23 24 25 26
import mindspore.nn as nn
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.nn.metrics import Accuracy
from mindspore.train import Model
Z
zhunaipan 已提交
27
from mindspore.common import dtype as mstype
J
jinyaohui 已提交
28 29 30
from mindspore.common.initializer import initializer
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train.callback import LossMonitor
31

J
jinyaohui 已提交
32 33 34 35
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
Z
zhunaipan 已提交
36 37

context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
38 39


Z
zhunaipan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
class LeNet(nn.Cell):
    def __init__(self):
        super(LeNet, self).__init__()
        self.relu = P.ReLU()
        self.batch_size = 1
        weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
        weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
        self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")

        self.reshape = P.Reshape()
        self.reshape1 = P.Reshape()

        self.fc1 = Dense(400, 120)
        self.fc2 = Dense(120, 84)
        self.fc3 = Dense(84, 10)

    def construct(self, input_x):
        output = self.conv1(input_x)
        output = self.relu(output)
        output = self.pool(output)
        output = self.conv2(output)
        output = self.relu(output)
        output = self.pool(output)
        output = self.reshape(output, (self.batch_size, -1))
        output = self.fc1(output)
        output = self.fc2(output)
        output = self.fc3(output)
        return output


def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
    lr = []
    for step in range(total_steps):
J
jinyaohui 已提交
75
        lr_ = base_lr * gamma ** (step // gap)
Z
zhunaipan 已提交
76 77 78
        lr.append(lr_)
    return Tensor(np.array(lr), dtype)

79

Z
zhunaipan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_lenet():
    epoch = 100
    net = LeNet()
    momentum = initializer(Tensor(np.array([0.9]).astype(np.float32)), [1])
    learning_rate = multisteplr(epoch, 30)

    optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
    criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    net_with_criterion = WithLossCell(net, criterion)
    train_network = TrainOneStepCell(net_with_criterion, optimizer)  # optimizer
    train_network.set_train()
    losses = []
    for i in range(epoch):
96
        data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
Z
zhunaipan 已提交
97 98 99 100
        label = Tensor(np.ones([net.batch_size]).astype(np.int32))
        loss = train_network(data, label)
        losses.append(loss)
    print(losses)
J
jinyaohui 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157


def create_dataset(data_path, batch_size=32, repeat_size=1,
                   num_parallel_workers=1):
    """
    create dataset for train or test
    """
    # define dataset
    mnist_ds = ds.MnistDataset(data_path)

    resize_height, resize_width = 32, 32
    rescale = 1.0 / 255.0
    shift = 0.0
    rescale_nml = 1 / 0.3081
    shift_nml = -1 * 0.1307 / 0.3081

    # define map operations
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # Bilinear mode
    rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)

    # apply map operations on images
    mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)

    # apply DatasetOps
    buffer_size = 10000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)  # 10000 as in LeNet train script
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
    mnist_ds = mnist_ds.repeat(repeat_size)

    return mnist_ds


@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_and_eval_lenet():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False)
    network = LeNet5(10)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    print("============== Starting Training ==============")
    ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
    model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True)

    print("============== Starting Testing ==============")
    ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
    acc = model.eval(ds_eval, dataset_sink_mode=True)
    print("============== Accuracy:{} ==============".format(acc))