test_switch_layer.py 1.8 KB
Newer Older
L
leilei_snow 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np
import pytest

import mindspore.context as context
from mindspore import Tensor, nn
from mindspore.common import dtype as mstype


class CaseNet(nn.Cell):
    def __init__(self):
        super(CaseNet, self).__init__()
        self.conv = nn.Conv2d(1, 3, 3)
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax()
        self.layers1 = (self.relu, self.softmax)
        self.layers2 = (self.conv, self.relu)

    def construct(self, x, index1, index2):
        x = self.layers1[index1](x)
        x = self.layers2[index2](x)
        return x


@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_switch_layer():
    context.set_context(mode=context.GRAPH_MODE)
    net = CaseNet()
    data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32)
    idx = Tensor(0, mstype.int32)
    idx2 = Tensor(-1, mstype.int32)
    value = net(data, idx, idx2)
    relu = nn.ReLU()
    true_value = relu(data)
    ret = np.allclose(value.asnumpy(), true_value.asnumpy())
    assert ret

    idx3 = Tensor(3, mstype.int32)
    with pytest.raises(RuntimeError):
        value = net(data, idx3, idx2)