train.py 6.5 KB
Newer Older
M
meixiaowei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""train MaskRcnn and get checkpoint files."""

import os
import argparse
import random
import numpy as np

import mindspore.common.dtype as mstype
from mindspore import context, Tensor
from mindspore.communication.management import init
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
Y
yao_yf 已提交
27 28
from mindspore.train import Model
from mindspore.context import ParallelMode
M
meixiaowei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import SGD
import mindspore.dataset.engine as de

from src.MaskRcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50
from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
from src.config import config
from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset
from src.lr_schedule import dynamic_lr

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

parser = argparse.ArgumentParser(description="MaskRcnn training")
parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
                                                                            "Mindrecord, default is false.")
parser.add_argument("--run_distribute", type=bool, default=False, help="Run distribute, default is false.")
parser.add_argument("--do_train", type=bool, default=True, help="Do train or not, default is true.")
parser.add_argument("--do_eval", type=bool, default=False, help="Do eval or not, default is false.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument("--pre_trained", type=str, default="", help="Pretrain file path.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default is 0.")
args_opt = parser.parse_args()

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=args_opt.device_id)

if __name__ == '__main__':
    print("Start train for maskrcnn!")
    if not args_opt.do_eval and args_opt.run_distribute:
        rank = args_opt.rank_id
        device_num = args_opt.device_num
        context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                          mirror_mean=True, parameter_broadcast=True)
        init()
    else:
        rank = 0
        device_num = 1

    print("Start create dataset!")

    # It will generate mindrecord file in args_opt.mindrecord_dir,
    # and the file name is MaskRcnn.mindrecord0, 1, ... file_num.
    prefix = "MaskRcnn.mindrecord"
    mindrecord_dir = config.mindrecord_dir
    mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
    if not os.path.exists(mindrecord_file):
        if not os.path.isdir(mindrecord_dir):
            os.makedirs(mindrecord_dir)
        if args_opt.dataset == "coco":
            if os.path.isdir(config.coco_root):
                print("Create Mindrecord.")
                data_to_mindrecord_byte_image("coco", True, prefix)
                print("Create Mindrecord Done, at {}".format(mindrecord_dir))
            else:
                print("coco_root not exits.")
        else:
            if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
                print("Create Mindrecord.")
                data_to_mindrecord_byte_image("other", True, prefix)
                print("Create Mindrecord Done, at {}".format(mindrecord_dir))
            else:
                print("IMAGE_DIR or ANNO_PATH not exits.")

    if not args_opt.only_create_dataset:
        loss_scale = float(config.loss_scale)

        # When create MindDataset, using the fitst mindrecord file, such as MaskRcnn.mindrecord0.
        dataset = create_maskrcnn_dataset(mindrecord_file, batch_size=config.batch_size,
                                          device_num=device_num, rank_id=rank)

        dataset_size = dataset.get_dataset_size()
        print("total images num: ", dataset_size)
        print("Create dataset done!")

        net = Mask_Rcnn_Resnet50(config=config)
        net = net.set_train()

        load_path = args_opt.pre_trained
        if load_path != "":
            param_dict = load_checkpoint(load_path)
M
meixiaowei 已提交
112 113 114 115
            if config.pretrain_epoch_size == 0:
                for item in list(param_dict.keys()):
                    if not (item.startswith('backbone') or item.startswith('rcnn_mask')):
                        param_dict.pop(item)
M
meixiaowei 已提交
116 117 118
            load_param_into_net(net, param_dict)

        loss = LossNet()
M
meixiaowei 已提交
119 120
        lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),
                    mstype.float32)
M
meixiaowei 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
                  weight_decay=config.weight_decay, loss_scale=config.loss_scale)

        net_with_loss = WithLossCell(net, loss)
        if args_opt.run_distribute:
            net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True,
                                   mean=True, degree=device_num)
        else:
            net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale)

        time_cb = TimeMonitor(data_size=dataset_size)
        loss_cb = LossCallBack()
        cb = [time_cb, loss_cb]
        if config.save_checkpoint:
            ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * dataset_size,
                                          keep_checkpoint_max=config.keep_checkpoint_max)
            ckpoint_cb = ModelCheckpoint(prefix='mask_rcnn', directory=config.save_checkpoint_path, config=ckptconfig)
            cb += [ckpoint_cb]

        model = Model(net)
        model.train(config.epoch_size, dataset, callbacks=cb)