vgg.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""VGG."""
import mindspore.nn as nn
from mindspore.common.initializer import initializer
import mindspore.common.dtype as mstype

def _make_layer(base, batch_norm):
    """Make stage network of VGG."""
    layers = []
    in_channels = 3
    for v in base:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            weight_shape = (v, in_channels, 3, 3)
            weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
            conv2d = nn.Conv2d(in_channels=in_channels,
                               out_channels=v,
                               kernel_size=3,
                               padding=0,
                               pad_mode='same',
                               weight_init=weight)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
            else:
                layers += [conv2d, nn.ReLU()]
            in_channels = v
    return nn.SequentialCell(layers)


class Vgg(nn.Cell):
    """
    VGG network definition.

    Args:
        base (list): Configuration for different layers, mainly the channel number of Conv layer.
        num_classes (int): Class numbers. Default: 1000.
        batch_norm (bool): Whether to do the batchnorm. Default: False.
        batch_size (int): Batch size. Default: 1.

    Returns:
        Tensor, infer output tensor.

    Examples:
        >>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
        >>>     num_classes=1000, batch_norm=False, batch_size=1)
    """

    def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
        super(Vgg, self).__init__()
        _ = batch_size
        self.layers = _make_layer(base, batch_norm=batch_norm)
        self.flatten = nn.Flatten()
        self.classifier = nn.SequentialCell([
            nn.Dense(512 * 7 * 7, 4096),
            nn.ReLU(),
            nn.Dense(4096, 4096),
            nn.ReLU(),
            nn.Dense(4096, num_classes)])

    def construct(self, x):
        x = self.layers(x)
        x = self.flatten(x)
        x = self.classifier(x)
        return x


cfg = {
    '11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    '13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    '16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    '19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def vgg16(num_classes=1000):
    """
    Get Vgg16 neural network with batch normalization.

    Args:
        num_classes (int): Class numbers. Default: 1000.

    Returns:
        Cell, cell instance of Vgg16 neural network with batch normalization.

    Examples:
        >>> vgg16(num_classes=1000)
    """

    net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True)
    return net