test_auto_parallel_reshape.py 8.8 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from tests.ut.python.ops.test_math_ops import VirtualLoss
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.common.parameter import Parameter


class NetWithLoss(nn.Cell):
    def __init__(self, network):
        super(NetWithLoss, self).__init__()
        self.loss = VirtualLoss()
        self.network = network

    def construct(self, x):
        predict = self.network(x)
        return self.loss(predict)

class GradWrap(nn.Cell):
    def __init__(self, network):
        super(GradWrap, self).__init__()
        self.network = network

    def construct(self, x):
        return C.grad_all(self.network)(x)

# core dump, step_auto_parallel should SetInputs for transpose axis
def test_reshape_matmul():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.reshape = P.Reshape()
            self.matmul = P.MatMul()
高东海's avatar
高东海 已提交
52
            self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
Z
zhunaipan 已提交
53 54

        def construct(self, x):
高东海's avatar
高东海 已提交
55
            out = self.reshape(x, (64, 28))
Z
zhunaipan 已提交
56 57 58 59 60
            out = self.matmul(out, self.matmul_weight)
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
高东海's avatar
高东海 已提交
61
    x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32)
Z
zhunaipan 已提交
62 63 64

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
Y
yangzhenzhang 已提交
65
    net.set_auto_parallel()
Z
zhunaipan 已提交
66 67
    _executor.compile(net, x)

Y
yao_yf 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def test_reshape_auto_1():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.reshape = P.Reshape()
            self.matmul = P.MatMul()
            self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")

        def construct(self, x):
            out = self.relu(x)
            out = self.reshape(out, (64, 28))
            out = self.matmul(out, self.matmul_weight)
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
89
    net.set_auto_parallel()
Y
yao_yf 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    _executor.compile(net, x)

def test_reshape_auto_2():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.reshape = P.Reshape()
            self.matmul = P.MatMul()
            self.add_weight =  Parameter(Tensor(np.ones([128, 32]), dtype=ms.float32), name="weight1")
            self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")

        def construct(self, x):
            out = self.relu(x)
            out = self.reshape(out, (64, 28))
            out = self.matmul(out, self.matmul_weight)
            out = self.reshape(out, (128, 32))
            out = out + self.add_weight
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
116
    net.set_auto_parallel()
Y
yao_yf 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    _executor.compile(net, x)

def test_reshape_auto_3():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.reshape = P.Reshape()
            self.matmul = P.MatMul()
            self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")

        def construct(self, x):
            out = self.relu(x)
            out = self.matmul(out, self.matmul_weight)
            out = self.reshape(out, (8, 8, 8, 8))
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([8*size, 28]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
140
    net.set_auto_parallel()
Y
yao_yf 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    _executor.compile(net, x)

def test_reshape_auto_4():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.reshape = P.Reshape()
            self.matmul = P.MatMul()
            self.matmul_weight = Parameter(Tensor(np.ones([28*64]), dtype=ms.float32), name="weight")

        def construct(self, x):
            out = self.relu(x)
            out = self.reshape(out, (64, 28))
            w = self.reshape(self.matmul_weight, (28, 64))
            out = self.matmul(out, w)
            return out
Z
zhunaipan 已提交
158

Y
yao_yf 已提交
159 160 161 162 163 164
    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
165
    net.set_auto_parallel()
Y
yao_yf 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    _executor.compile(net, x)


def test_reshape_auto_5():
    class NetWithLoss(nn.Cell):
        def __init__(self, network):
            super(NetWithLoss, self).__init__()
            self.loss = VirtualLoss()
            self.network = network

        def construct(self, x, y):
            predict = self.network(x, y)
            return self.loss(predict)

    class GradWrap(nn.Cell):
        def __init__(self, network):
            super(GradWrap, self).__init__()
            self.network = network

        def construct(self, x, y):
            return C.grad_all(self.network)(x, y)

    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.mul = P.Mul()
            self.reshape = P.Reshape()
            self.reduce_sum = P.ReduceSum()
            self.wide_w = Parameter(Tensor(np.ones([4, 1024*8, 64]), dtype=ms.float32), name="weight")

        def construct(self, x, y):
            mask = self.reshape(y, (4, 1024*8, 1))
            w_id = self.relu(x)
            wx = self.mul(w_id, mask)
            wide_out = self.reshape(self.reduce_sum(wx, 1), (-1,1))
            deep_id = x + self.wide_w
            vx = self.mul(deep_id, mask)
            deep_in = self.reshape(vx, (-1, 1024*8*64))
            out = wide_out + deep_in
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([4, 1024*size, 1]), dtype=ms.float32)
    y = Tensor(np.ones([4, 1024*size,]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
215
    net.set_auto_parallel()
Y
yao_yf 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    _executor.compile(net, x, y)

def test_reshape_auto_6():
    class NetWithLoss(nn.Cell):
        def __init__(self, network):
            super(NetWithLoss, self).__init__()
            self.loss = VirtualLoss()
            self.network = network

        def construct(self, x, y):
            predict = self.network(x, y)
            return self.loss(predict)

    class GradWrap(nn.Cell):
        def __init__(self, network):
            super(GradWrap, self).__init__()
            self.network = network

        def construct(self, x, y):
            return C.grad_all(self.network)(x, y)

    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.relu = P.ReLU()
            self.mul = P.Mul()
            self.reshape = P.Reshape()
            self.reduce_mean = P.ReduceMean()
            self.wide_w = Parameter(Tensor(np.ones([4, 1024, 1]), dtype=ms.float32), name="weight")

        def construct(self, x, y):
            out1 = x + self.wide_w
            w = self.reshape(self.wide_w, (4,1024))
            out1 = self.reduce_mean(out1, 1)
            out1 = out1 - w
            out2 = self.mul(y, w)
            out = out1 + out2
            return out

    size = 8
    context.set_auto_parallel_context(device_num=size, global_rank=0)
    x = Tensor(np.ones([4, 1024, 1]), dtype=ms.float32)
    y = Tensor(np.ones([4, 1024,]), dtype=ms.float32)

    net = GradWrap(NetWithLoss(Net()))
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
262
    net.set_auto_parallel()
Y
yao_yf 已提交
263
    _executor.compile(net, x, y)