c_api_datasets_test.cc 5.3 KB
Newer Older
T
tony_liu2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 * Copyright 2020 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>

#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"

using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
using mindspore::dataset::dsize_t;

class MindDataTestPipeline : public UT::DatasetOpTesting {
 protected:
};

TEST_F(MindDataTestPipeline, TestMnistFail1) {
  MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMnistFail1.";

  // Create a Mnist Dataset
  std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10));
  EXPECT_EQ(ds, nullptr);
}

TEST_F(MindDataTestPipeline, TestImageFolderFail1) {
  MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderFail1.";

  // Create an ImageFolder Dataset
  std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr);
  EXPECT_EQ(ds, nullptr);
}

TEST_F(MindDataTestPipeline, TestCelebADataset) {
  MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebADataset.";

  // Create a CelebA Dataset
  std::string folder_path = datasets_root_path_ + "/testCelebAData/";
  std::shared_ptr<Dataset> ds = CelebA(folder_path, "all", SequentialSampler(0, 2), false, {});
  EXPECT_NE(ds, nullptr);

  // Create an iterator over the result of the above dataset
  // This will trigger the creation of the Execution Tree and launch it.
  std::shared_ptr<Iterator> iter = ds->CreateIterator();
  EXPECT_NE(iter, nullptr);

  // Iterate the dataset and get each row
  std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
  iter->GetNextRow(&row);

  // Check if CelebAOp read correct images/attr
  std::string expect_file[] = {"1.JPEG", "2.jpg"};
  std::vector<std::vector<uint32_t>> expect_attr_vector =
    {{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
      1, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
      1, 0, 0, 0, 0, 0, 0, 0, 1}};
  uint64_t i = 0;
  while (row.size() != 0) {
    auto image = row["image"];
    auto attr = row["attr"];

    std::shared_ptr<Tensor> expect_image;
    Tensor::CreateFromFile(folder_path + expect_file[i], &expect_image);
    EXPECT_EQ(*image, *expect_image);

    std::shared_ptr<Tensor> expect_attr;
    Tensor::CreateFromVector(expect_attr_vector[i], TensorShape({40}), &expect_attr);
    EXPECT_EQ(*attr, *expect_attr);

    iter->GetNextRow(&row);
    i++;
  }

  EXPECT_EQ(i, 2);

  // Manually terminate the pipeline
  iter->Stop();
}

TEST_F(MindDataTestPipeline, TestCelebADefault) {
  MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebADefault.";

  // Create a CelebA Dataset
  std::string folder_path = datasets_root_path_ + "/testCelebAData/";
  std::shared_ptr<Dataset> ds = CelebA(folder_path);
  EXPECT_NE(ds, nullptr);

  // Create an iterator over the result of the above dataset
  // This will trigger the creation of the Execution Tree and launch it.
  std::shared_ptr<Iterator> iter = ds->CreateIterator();
  EXPECT_NE(iter, nullptr);

  // Iterate the dataset and get each row
  std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
  iter->GetNextRow(&row);

  // Check if CelebAOp read correct images/attr
  uint64_t i = 0;
  while (row.size() != 0) {
    auto image = row["image"];
    auto attr = row["attr"];
    MS_LOG(INFO) << "Tensor image shape: " << image->shape();
    MS_LOG(INFO) << "Tensor attr shape: " << attr->shape();

    iter->GetNextRow(&row);
    i++;
  }

  EXPECT_EQ(i, 2);

  // Manually terminate the pipeline
  iter->Stop();
}

TEST_F(MindDataTestPipeline, TestCelebAException) {
  MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebAException.";

  // Create a CelebA Dataset
  std::string folder_path = datasets_root_path_ + "/testCelebAData/";
  std::string invalid_folder_path = "./testNotExist";
  std::string invalid_dataset_type = "invalid_type";
  std::shared_ptr<Dataset> ds = CelebA(invalid_folder_path);
  EXPECT_EQ(ds, nullptr);
  std::shared_ptr<Dataset> ds1 = CelebA(folder_path, invalid_dataset_type);
  EXPECT_EQ(ds1, nullptr);
}