dataset.py 8.0 KB
Newer Older
W
wangjun260 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
M
ms_yan 已提交
16
dataset processing.
W
wangjun260 已提交
17 18
"""
import os
M
ms_yan 已提交
19 20
from mindspore.common import dtype as mstype
import mindspore.dataset as de
W
wangjun260 已提交
21
import mindspore.dataset.transforms.c_transforms as C
E
Eric 已提交
22
import mindspore.dataset.vision.c_transforms as vision
M
ms_yan 已提交
23 24 25 26
from PIL import Image, ImageFile
from src.utils.sampler import DistributedSampler

ImageFile.LOAD_TRUNCATED_IMAGES = True
27

W
wangjun260 已提交
28

M
ms_yan 已提交
29
def vgg_create_dataset(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1, training=True):
W
wangjun260 已提交
30
    """Data operations."""
M
ms_yan 已提交
31
    de.config.set_seed(1)
W
wangjun260 已提交
32 33 34
    data_dir = os.path.join(data_home, "cifar-10-batches-bin")
    if not training:
        data_dir = os.path.join(data_home, "cifar-10-verify-bin")
C
caojian05 已提交
35

M
ms_yan 已提交
36
    data_set = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
C
caojian05 已提交
37

W
wangjun260 已提交
38 39 40 41 42 43
    rescale = 1.0 / 255.0
    shift = 0.0

    # define map operations
    random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4))  # padding_mode default CONSTANT
    random_horizontal_op = vision.RandomHorizontalFlip()
M
ms_yan 已提交
44
    resize_op = vision.Resize(image_size)  # interpolation default BILINEAR
W
wangjun260 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    rescale_op = vision.Rescale(rescale, shift)
    normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
    changeswap_op = vision.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)

    c_trans = []
    if training:
        c_trans = [random_crop_op, random_horizontal_op]
    c_trans += [resize_op, rescale_op, normalize_op,
                changeswap_op]

    # apply map operations on images
    data_set = data_set.map(input_columns="label", operations=type_cast_op)
    data_set = data_set.map(input_columns="image", operations=c_trans)

    # apply repeat operations
    data_set = data_set.repeat(repeat_num)

    # apply shuffle operations
    data_set = data_set.shuffle(buffer_size=10)

    # apply batch operations
M
ms_yan 已提交
67
    data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
W
wangjun260 已提交
68 69

    return data_set
M
ms_yan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151


def classification_dataset(data_dir, image_size, per_batch_size, rank=0, group_size=1,
                           mode='train',
                           input_mode='folder',
                           root='',
                           num_parallel_workers=None,
                           shuffle=None,
                           sampler=None,
                           repeat_num=1,
                           class_indexing=None,
                           drop_remainder=True,
                           transform=None,
                           target_transform=None):
    """
    A function that returns a dataset for classification. The mode of input dataset could be "folder" or "txt".
    If it is "folder", all images within one folder have the same label. If it is "txt", all paths of images
    are written into a textfile.

    Args:
        data_dir (str): Path to the root directory that contains the dataset for "input_mode="folder"".
            Or path of the textfile that contains every image's path of the dataset.
        image_size (str): Size of the input images.
        per_batch_size (int): the batch size of evey step during training.
        rank (int): The shard ID within num_shards (default=None).
        group_size (int): Number of shards that the dataset should be divided
            into (default=None).
        mode (str): "train" or others. Default: " train".
        input_mode (str): The form of the input dataset. "folder" or "txt". Default: "folder".
        root (str): the images path for "input_mode="txt"". Default: " ".
        num_parallel_workers (int): Number of workers to read the data. Default: None.
        shuffle (bool): Whether or not to perform shuffle on the dataset
            (default=None, performs shuffle).
        sampler (Sampler): Object used to choose samples from the dataset. Default: None.
        repeat_num (int): the num of repeat dataset.
        class_indexing (dict): A str-to-int mapping from folder name to index
            (default=None, the folder names will be sorted
            alphabetically and each class will be given a
            unique index starting from 0).

    Examples:
        >>> from mindvision.common.datasets.classification import classification_dataset
        >>> # path to imagefolder directory. This directory needs to contain sub-directories which contain the images
        >>> dataset_dir = "/path/to/imagefolder_directory"
        >>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244],
        >>>                               per_batch_size=64, rank=0, group_size=4)
        >>> # Path of the textfile that contains every image's path of the dataset.
        >>> dataset_dir = "/path/to/dataset/images/train.txt"
        >>> images_dir = "/path/to/dataset/images"
        >>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244],
        >>>                               per_batch_size=64, rank=0, group_size=4,
        >>>                               input_mode="txt", root=images_dir)
    """

    mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
    std = [0.229 * 255, 0.224 * 255, 0.225 * 255]

    if transform is None:
        if mode == 'train':
            transform_img = [
                vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0)),
                vision.RandomHorizontalFlip(prob=0.5),
                vision.Normalize(mean=mean, std=std),
                vision.HWC2CHW()
            ]
        else:
            transform_img = [
                vision.Decode(),
                vision.Resize((256, 256)),
                vision.CenterCrop(image_size),
                vision.Normalize(mean=mean, std=std),
                vision.HWC2CHW()
            ]
    else:
        transform_img = transform

    if target_transform is None:
        transform_label = [C.TypeCast(mstype.int32)]
    else:
        transform_label = target_transform

    if input_mode == 'folder':
N
nhussain 已提交
152 153 154
        de_dataset = de.ImageFolderDataset(data_dir, num_parallel_workers=num_parallel_workers,
                                           shuffle=shuffle, sampler=sampler, class_indexing=class_indexing,
                                           num_shards=group_size, shard_id=rank)
M
ms_yan 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    else:
        dataset = TxtDataset(root, data_dir)
        sampler = DistributedSampler(dataset, rank, group_size, shuffle=shuffle)
        de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler)
        de_dataset.set_dataset_size(len(sampler))

    de_dataset = de_dataset.map(input_columns="image", num_parallel_workers=8, operations=transform_img)
    de_dataset = de_dataset.map(input_columns="label", num_parallel_workers=8, operations=transform_label)

    columns_to_project = ["image", "label"]
    de_dataset = de_dataset.project(columns=columns_to_project)

    de_dataset = de_dataset.batch(per_batch_size, drop_remainder=drop_remainder)
    de_dataset = de_dataset.repeat(repeat_num)

    return de_dataset


class TxtDataset:
    """
    create txt dataset.

    Args:
    Returns:
        de_dataset.
    """
    def __init__(self, root, txt_name):
        super(TxtDataset, self).__init__()
        self.imgs = []
        self.labels = []
        fin = open(txt_name, "r")
        for line in fin:
            img_name, label = line.strip().split(' ')
            self.imgs.append(os.path.join(root, img_name))
            self.labels.append(int(label))
        fin.close()

    def __getitem__(self, index):
        img = Image.open(self.imgs[index]).convert('RGB')
        return img, self.labels[index]

    def __len__(self):
        return len(self.imgs)