dataset.py 3.0 KB
Newer Older
M
meixiaowei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from config import config

def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
    """
    create a train or evaluate dataset
    Args:
        dataset_path(string): the path of dataset.
        do_train(bool): whether dataset is used for train or eval.
        repeat_num(int): the repeat times of dataset. Default: 1
        batch_size(int): the batch size of dataset. Default: 32

    Returns:
        dataset
    """
    device_num = int(os.getenv("RANK_SIZE"))
    rank_id = int(os.getenv("RANK_ID"))

    if device_num == 1:
        ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
    else:
        ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
                                     num_shards=device_num, shard_id=rank_id)
    resize_height = 224
    rescale = 1.0 / 255.0
    shift = 0.0

    # define map operations
    decode_op = C.Decode()

    random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100)
    horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
    resize_op_256 = C.Resize((256, 256))
    center_crop = C.CenterCrop(224)
    rescale_op = C.Rescale(rescale, shift)
    normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278))
    changeswap_op = C.HWC2CHW()

M
meixiaowei 已提交
60
    trans = []
M
meixiaowei 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    if do_train:
        trans = [decode_op,
                 random_resize_crop_op,
                 horizontal_flip_op,
                 rescale_op,
                 normalize_op,
                 changeswap_op]

    else:
        trans = [decode_op,
                 resize_op_256,
                 center_crop,
                 rescale_op,
                 normalize_op,
                 changeswap_op]

    type_cast_op = C2.TypeCast(mstype.int32)

    ds = ds.map(input_columns="image", operations=trans)
    ds = ds.map(input_columns="label", operations=type_cast_op)

    # apply shuffle operations
    ds = ds.shuffle(buffer_size=config.buffer_size)
    # apply batch operations
    ds = ds.batch(batch_size, drop_remainder=True)
    # apply dataset repeat operation
    ds = ds.repeat(repeat_num)

    return ds