lr_generator.py 2.0 KB
Newer Older
M
meixiaowei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""learning rate generator"""
import math
M
meixiaowei 已提交
17
import numpy as np
M
meixiaowei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
    lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
    lr = float(init_lr) + lr_inc * current_step
    return lr

def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
    """
    generate learning rate array with cosine

    Args:
       lr(float): base learning rate
       steps_per_epoch(int): steps size of one epoch
       warmup_epochs(int): number of warmup epochs
       max_epoch(int): total epochs of training
    Returns:
       np.array, learning rate array
    """
    base_lr = lr
    warmup_init_lr = 0
    total_steps = int(max_epoch * steps_per_epoch)
    warmup_steps = int(warmup_epochs * steps_per_epoch)
    decay_steps = total_steps - warmup_steps

    lr_each_step = []
    for i in range(total_steps):
        if i < warmup_steps:
            lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
        else:
            linear_decay = (total_steps - i) / decay_steps
            cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
            decayed = linear_decay * cosine_decay + 0.00001
            lr = base_lr * decayed
        lr_each_step.append(lr)
M
meixiaowei 已提交
52
    return np.array(lr_each_step).astype(np.float32)