train.py 8.4 KB
Newer Older
C
chenzomi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
import os
import time
import argparse
import random
import numpy as np
21

C
chenzomi 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35
from mindspore import context
from mindspore import Tensor
from mindspore import nn
from mindspore.nn.optim.momentum import Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
36 37
from mindspore.communication.management import init, get_group_size, get_rank

C
chenzomi 已提交
38 39
from src.dataset import create_dataset
from src.lr_generator import get_lr
C
chenzomi 已提交
40
from src.config import config_gpu
C
chenzomi 已提交
41 42 43 44 45 46 47 48 49
from src.mobilenetV3 import mobilenet_v3_large

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
C
chenzomi 已提交
50
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
C
chenzomi 已提交
51 52
args_opt = parser.parse_args()

C
chenzomi 已提交
53
if args_opt.device_target == "Ascend":
C
chenzomi 已提交
54 55 56 57 58 59 60
    device_id = int(os.getenv('DEVICE_ID'))
    rank_id = int(os.getenv('RANK_ID'))
    rank_size = int(os.getenv('RANK_SIZE'))
    run_distribute = rank_size > 1
    device_id = int(os.getenv('DEVICE_ID'))
    context.set_context(mode=context.GRAPH_MODE,
                        device_target="Ascend",
61 62
                        device_id=device_id,
                        save_graphs=False)
C
chenzomi 已提交
63
elif args_opt.device_target == "GPU":
C
chenzomi 已提交
64
    context.set_context(mode=context.GRAPH_MODE,
65 66 67 68 69 70
                        device_target="GPU",
                        save_graphs=False)
    init("nccl")
    context.set_auto_parallel_context(device_num=get_group_size(),
                                      parallel_mode=ParallelMode.DATA_PARALLEL,
                                      mirror_mean=True)
C
chenzomi 已提交
71
else:
C
chenzomi 已提交
72
    raise ValueError("Unsupported device_target.")
C
chenzomi 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


class CrossEntropyWithLabelSmooth(_Loss):
    """
    CrossEntropyWith LabelSmooth.

    Args:
        smooth_factor (float): smooth factor, default=0.
        num_classes (int): num classes

    Returns:
        None.

    Examples:
        >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
    """

    def __init__(self, smooth_factor=0., num_classes=1000):
        super(CrossEntropyWithLabelSmooth, self).__init__()
        self.onehot = P.OneHot()
        self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
        self.off_value = Tensor(1.0 * smooth_factor /
                                (num_classes - 1), mstype.float32)
        self.ce = nn.SoftmaxCrossEntropyWithLogits()
        self.mean = P.ReduceMean(False)
        self.cast = P.Cast()

    def construct(self, logit, label):
        one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
                                    self.on_value, self.off_value)
        out_loss = self.ce(logit, one_hot_label)
        out_loss = self.mean(out_loss, 0)
        return out_loss


class Monitor(Callback):
    """
    Monitor loss and time.

    Args:
        lr_init (numpy array): train lr

    Returns:
        None

    Examples:
        >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
    """

    def __init__(self, lr_init=None):
        super(Monitor, self).__init__()
        self.lr_init = lr_init
        self.lr_init_len = len(lr_init)

    def epoch_begin(self, run_context):
        self.losses = []
        self.epoch_time = time.time()

    def epoch_end(self, run_context):
        cb_params = run_context.original_args()

        epoch_mseconds = (time.time() - self.epoch_time) * 1000
        per_step_mseconds = epoch_mseconds / cb_params.batch_num
        print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
                                                                                      per_step_mseconds,
                                                                                      np.mean(self.losses)))

    def step_begin(self, run_context):
        self.step_time = time.time()

    def step_end(self, run_context):
        cb_params = run_context.original_args()
        step_mseconds = (time.time() - self.step_time) * 1000
        step_loss = cb_params.net_outputs

        if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
            step_loss = step_loss[0]
        if isinstance(step_loss, Tensor):
            step_loss = np.mean(step_loss.asnumpy())

        self.losses.append(step_loss)
        cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num

        print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
            cb_params.cur_epoch_num -
            1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
            np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))


if __name__ == '__main__':
C
chenzomi 已提交
163
    if args_opt.device_target == "GPU":
C
chenzomi 已提交
164
        # train on gpu
165 166
        print("train args: ", args_opt)
        print("cfg: ", config_gpu)
C
chenzomi 已提交
167

C
chenzomi 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181
        # define net
        net = mobilenet_v3_large(num_classes=config_gpu.num_classes)
        # define loss
        if config_gpu.label_smooth > 0:
            loss = CrossEntropyWithLabelSmooth(
                smooth_factor=config_gpu.label_smooth, num_classes=config_gpu.num_classes)
        else:
            loss = SoftmaxCrossEntropyWithLogits(
                is_grad=False, sparse=True, reduction='mean')
        # define dataset
        epoch_size = config_gpu.epoch_size
        dataset = create_dataset(dataset_path=args_opt.dataset_path,
                                 do_train=True,
                                 config=config_gpu,
C
chenzomi 已提交
182
                                 device_target=args_opt.device_target,
183
                                 repeat_num=1,
C
chenzomi 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                                 batch_size=config_gpu.batch_size)
        step_size = dataset.get_dataset_size()
        # resume
        if args_opt.pre_trained:
            param_dict = load_checkpoint(args_opt.pre_trained)
            load_param_into_net(net, param_dict)
        # define optimizer
        loss_scale = FixedLossScaleManager(
            config_gpu.loss_scale, drop_overflow_update=False)
        lr = Tensor(get_lr(global_step=0,
                           lr_init=0,
                           lr_end=0,
                           lr_max=config_gpu.lr,
                           warmup_epochs=config_gpu.warmup_epochs,
                           total_epochs=epoch_size,
                           steps_per_epoch=step_size))
        opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum,
                       config_gpu.weight_decay, config_gpu.loss_scale)
        # define model
        model = Model(net, loss_fn=loss, optimizer=opt,
                      loss_scale_manager=loss_scale)

        cb = [Monitor(lr_init=lr.asnumpy())]
207
        ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
C
chenzomi 已提交
208 209 210
        if config_gpu.save_checkpoint:
            config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
                                         keep_checkpoint_max=config_gpu.keep_checkpoint_max)
211
            ckpt_cb = ModelCheckpoint(prefix="mobilenetV3", directory=ckpt_save_dir, config=config_ck)
C
chenzomi 已提交
212 213 214
            cb += [ckpt_cb]
        # begine train
        model.train(epoch_size, dataset, callbacks=cb)