test_predict_save_model.py 3.2 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
    test network
Usage:
    python test_predict_save_model.py --path ./
"""

import argparse
J
jinyaohui 已提交
23
import os
“liuxiao” 已提交
24
import numpy as np
J
jinyaohui 已提交
25 26

import mindspore.context as context
Z
zhunaipan 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore.common.tensor import Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net


class LeNet(nn.Cell):
    def __init__(self):
        super(LeNet, self).__init__()
        self.relu = P.ReLU()
        self.batch_size = 32

        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.reshape = P.Reshape()
        self.fc1 = nn.Dense(400, 120)
        self.fc2 = nn.Dense(120, 84)
        self.fc3 = nn.Dense(84, 10)

    def construct(self, input_x):
        output = self.conv1(input_x)
        output = self.relu(output)
        output = self.pool(output)
        output = self.conv2(output)
        output = self.relu(output)
        output = self.pool(output)
        output = self.reshape(output, (self.batch_size, -1))
        output = self.fc1(output)
        output = self.relu(output)
        output = self.fc2(output)
        output = self.relu(output)
        output = self.fc3(output)
        return output


parser = argparse.ArgumentParser(description='MindSpore Model Save')
parser.add_argument('--path', default='./lenet_model.ms', type=str, help='model save path')

if __name__ == '__main__':
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

    print("test lenet predict start")
    seed = 0
    np.random.seed(seed)
Y
yangjie159 已提交
72
    batch = 32
Z
zhunaipan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    channel = 1
    input_h = 32
    input_w = 32
    origin_data = np.random.uniform(low=0, high=255, size=(batch, channel, input_h, input_w)).astype(np.float32)
    origin_data.tofile("lenet_input_data.bin")

    input_data = Tensor(origin_data)
    print(input_data.asnumpy())
    net = LeNet()
    ckpt_file_path = "./tests/ut/python/predict/checkpoint_lenet.ckpt"
    predict_args = parser.parse_args()
    model_path_name = predict_args.path

    is_ckpt_exist = os.path.exists(ckpt_file_path)
    if is_ckpt_exist:
C
chenzomi 已提交
88
        param_dict = load_checkpoint(ckpt_file_name=ckpt_file_path)
Z
zhunaipan 已提交
89 90 91 92 93
        load_param_into_net(net, param_dict)
        export(net, input_data, file_name=model_path_name, file_format='LITE')
        print("test lenet predict success.")
    else:
        print("checkpoint file is not exist.")