hashcode.md 12.1 KB
Newer Older
沉默王二's avatar
沉默王二 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
---
category:
  - Java核心
tag:
  - Java
---

# 深入理解Java中的hashCode方法

假期结束了,需要快速切换到工作的状态投入到新的一天当中。放假的时候痛快地玩耍,上班的时候积极的工作,这应该是我们大多数“现代人”该有的生活状态。

我之所以费尽心思铺垫了前面这段话,就是想告诉大家,技术文虽迟但到,来吧,学起来~

今天我们来谈谈 Java 中的 `hashCode()` 方法。众所周知,Java 是一门面向对象的编程语言,所有的类都会默认继承自 Object 类,而 Object 的中文意思就是“对象”。

Object 类中就包含了 `hashCode()` 方法:

```java
@HotSpotIntrinsicCandidate
public native int hashCode();
```

意味着所有的类都会有一个 `hashCode()` 方法,该方法会返回一个 int 类型的值。由于 `hashCode()` 方法是一个本地方法(`native` 关键字修饰的方法,用 `C/C++` 语言实现,由 Java 调用),意味着 Object 类中并没有给出具体的实现。

具体的实现可以参考 `jdk/src/hotspot/share/runtime/synchronizer.cpp`(源码可以到 GitHub 上 OpenJDK 的仓库中下载)。`get_next_hash()` 方法会根据 hashCode 的取值来决定采用哪一种哈希值的生成策略。

![](http://cdn.tobebetterjavaer.com/tobebetterjavaer/images/basic-extra-meal/hashcode-1.png)

并且 `hashCode()` 方法被 `@HotSpotIntrinsicCandidate` 注解修饰,说明它在 HotSpot 虚拟机中有一套高效的实现,基于 CPU 指令。

那大家有没有想过这样一个问题:为什么 Object 类需要一个 `hashCode()` 方法呢?

在 Java 中,`hashCode()` 方法的主要作用就是为了配合哈希表使用的。

哈希表(Hash Table),也叫散列表,是一种可以通过关键码值(key-value)直接访问的数据结构,它最大的特点就是可以快速实现查找、插入和删除。其中用到的算法叫做哈希,就是把任意长度的输入,变换成固定长度的输出,该输出就是哈希值。像 MD5、SHA1 都用的是哈希算法。

像 Java 中的 HashSet、Hashtable(注意是小写的 t)、HashMap 都是基于哈希表的具体实现。其中的 HashMap 就是最典型的代表,不仅面试官经常问,工作中的使用频率也非常的高。

大家想一下,如果没有哈希表,但又需要这样一个数据结构,它里面存放的数据是不允许重复的,该怎么办呢?

要不使用 `equals()` 方法进行逐个比较?这种方案当然是可行的。但如果数据量特别特别大,采用 `equals()` 方法进行逐个对比的效率肯定很低很低,最好的解决方案就是哈希表。

拿 HashMap 来说吧。当我们要在它里面添加对象时,先调用这个对象的 `hashCode()` 方法,得到对应的哈希值,然后将哈希值和对象一起放到 HashMap 中。当我们要再添加一个新的对象时:

- 获取对象的哈希值;
- 和之前已经存在的哈希值进行比较,如果不相等,直接存进去;
- 如果有相等的,再调用 `equals()` 方法进行对象之间的比较,如果相等,不存了;
- 如果不等,说明哈希冲突了,增加一个链表,存放新的对象;
- 如果链表的长度大于 8,转为红黑树来处理。

就这么一套下来,调用 `equals()` 方法的频率就大大降低了。也就是说,只要哈希算法足够的高效,把发生哈希冲突的频率降到最低,哈希表的效率就特别的高。

来看一下 HashMap 的哈希算法:

```java
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
```

先调用对象的 `hashCode()` 方法,然后对该值进行右移运算,然后再进行异或运算。

通常来说,String 会用来作为 HashMap 的键进行哈希运算,因此我们再来看一下 String 的 `hashCode()` 方法:

```java
public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        hash = h = isLatin1() ? StringLatin1.hashCode(value)
                : StringUTF16.hashCode(value);
    }
    return h;
}
public static int hashCode(byte[] value) {
    int h = 0;
    int length = value.length >> 1;
    for (int i = 0; i < length; i++) {
        h = 31 * h + getChar(value, i);
    }
    return h;
}
```

可想而知,经过这么一系列复杂的运算,再加上 JDK 作者这种大师级别的设计,哈希冲突的概率我相信已经降到了最低。

当然了,从理论上来说,对于两个不同对象,它们通过 `hashCode()` 方法计算后的值可能相同。因此,不能使用 `hashCode()` 方法来判断两个对象是否相等,必须得通过 `equals()` 方法。

也就是说:

- 如果两个对象调用 `equals()` 方法得到的结果为 true,调用 `hashCode()` 方法得到的结果必定相等;
- 如果两个对象调用 `hashCode()` 方法得到的结果不相等,调用 `equals()` 方法得到的结果必定为 false;

反之:

- 如果两个对象调用 `equals()` 方法得到的结果为 false,调用 `hashCode()` 方法得到的结果不一定不相等;
- 如果两个对象调用 `hashCode()` 方法得到的结果相等,调用 `equals()` 方法得到的结果不一定为 true;

来看下面这段代码。

```java
public class Test {
    public static void main(String[] args) {
        Student s1 = new Student(18, "张三");
        Map<Student, Integer> scores = new HashMap<>();
        scores.put(s1, 98);
        System.out.println(scores.get(new Student(18, "张三")));
    }
}
 class Student {
    private int age;
    private String name;

     public Student(int age, String name) {
         this.age = age;
         this.name = name;
     }

     @Override
     public boolean equals(Object o) {
         Student student = (Student) o;
         return age == student.age &&
                 Objects.equals(name, student.name);
     }
 }
```

我们重写了 Student 类的 `equals()` 方法,如果两个学生的年纪和姓名相同,我们就认为是同一个学生,虽然很离谱,但我们就是这么草率。

`main()` 方法中,18 岁的张三考试得了 98 分,很不错的成绩,我们把张三和成绩放到了 HashMap 中,然后准备输出张三的成绩:

```
null
```

很不巧,结果为 null,而不是预期当中的 98。这是为什么呢?

原因就在于重写 `equals()` 方法的时候没有重写 `hashCode()` 方法。默认情况下,`hashCode()` 方法是一个本地方法,会返回对象的存储地址,显然 `put()` 中的 s1 和 `get()` 中的 `new Student(18, "张三")` 是两个对象,它们的存储地址肯定是不同的。

HashMap 的 `get()` 方法会调用 `hash(key.hashCode())` 计算对象的哈希值,虽然两个不同的 `hashCode()` 结果经过 `hash()` 方法计算后有可能得到相同的结果,但这种概率微乎其微,所以就导致 `scores.get(new Student(18, "张三"))` 无法得到预期的值 18。

怎么解决这个问题呢?很简单,重写 `hashCode()` 方法。

```java
 @Override
 public int hashCode() {
     return Objects.hash(age, name);
 }
```

Objects 类的 `hash()` 方法可以针对不同数量的参数生成新的 `hashCode()` 值。

```java
public static int hashCode(Object a[]) {
 if (a == null)
     return 0;

 int result = 1;

 for (Object element : a)
     result = 31 * result + (element == null ? 0 : element.hashCode());

 return result;
}
```

代码似乎很简单,归纳出的数学公式如下所示(n 为字符串长度)。

![](http://cdn.tobebetterjavaer.com/tobebetterjavaer/images/basic-extra-meal/hashcode-2.png)

注意:31 是个奇质数,不大不小,一般质数都非常适合哈希计算,偶数相当于移位运算,容易溢出,造成数据信息丢失。

这就意味着年纪和姓名相同的情况下,会得到相同的哈希值。`scores.get(new Student(18, "张三"))` 就会返回 98 的预期值了。

《Java 编程思想》这本圣经中有一段话,对 `hashCode()` 方法进行了一段描述。

>设计 `hashCode()` 时最重要的因素就是:无论何时,对同一个对象调用 `hashCode()` 都应该生成同样的值。如果在将一个对象用 `put()` 方法添加进 HashMap 时产生一个 `hashCode()` 值,而用 `get()` 方法取出时却产生了另外一个  `hashCode()` 值,那么就无法重新取得该对象了。所以,如果你的 `hashCode()` 方法依赖于对象中易变的数据,用户就要当心了,因为此数据发生变化时,`hashCode()` 就会生成一个不同的哈希值,相当于产生了一个不同的键。

也就是说,如果在重写 `hashCode()``equals()` 方法时,对象中某个字段容易发生改变,那么最好舍弃这些字段,以免产生不可预期的结果。

好。有了上面这些内容作为基础后,我们回头再来看看本地方法 `hashCode()` 的 C++ 源码。

```java
static inline intptr_t get_next_hash(Thread* current, oop obj) {
  intptr_t value = 0;
  if (hashCode == 0) {
    // This form uses global Park-Miller RNG.
    // On MP system we'll have lots of RW access to a global, so the
    // mechanism induces lots of coherency traffic.
    value = os::random();
  } else if (hashCode == 1) {
    // This variation has the property of being stable (idempotent)
    // between STW operations.  This can be useful in some of the 1-0
    // synchronization schemes.
    intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
    value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
  } else if (hashCode == 2) {
    value = 1;            // for sensitivity testing
  } else if (hashCode == 3) {
    value = ++GVars.hc_sequence;
  } else if (hashCode == 4) {
    value = cast_from_oop<intptr_t>(obj);
  } else {
    // Marsaglia's xor-shift scheme with thread-specific state
    // This is probably the best overall implementation -- we'll
    // likely make this the default in future releases.
    unsigned t = current->_hashStateX;
    t ^= (t << 11);
    current->_hashStateX = current->_hashStateY;
    current->_hashStateY = current->_hashStateZ;
    current->_hashStateZ = current->_hashStateW;
    unsigned v = current->_hashStateW;
    v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
    current->_hashStateW = v;
    value = v;
  }

  value &= markWord::hash_mask;
  if (value == 0) value = 0xBAD;
  assert(value != markWord::no_hash, "invariant");
  return value;
}
```

如果没有 C++ 基础的话,不用细致去看每一行代码,我们只通过表面去了解一下 `get_next_hash()` 这个方法就行。其中的 `hashCode` 变量是 JVM 启动时的一个全局参数,可以通过它来切换哈希值的生成策略。

- `hashCode==0`,调用操作系统 OS 的 `random()` 方法返回随机数。
- `hashCode == 1`,在 STW(stop-the-world)操作中,这种策略通常用于同步方案中。利用对象地址进行计算,使用不经常更新的随机数(`GVars.stw_random`)参与其中。
- `hashCode == 2`,使用返回 1,用于某些情况下的测试。
- `hashCode == 3`,从 0 开始计算哈希值,不是线程安全的,多个线程可能会得到相同的哈希值。
- `hashCode == 4`,与创建对象的内存位置有关,原样输出。
- `hashCode == 5`,默认值,支持多线程,使用了 Marsaglia 的 xor-shift 算法产生伪随机数。所谓的 xor-shift 算法,简单来说,看起来就是一个移位寄存器,每次移入的位由寄存器中若干位取异或生成。所谓的伪随机数,不是完全随机的,但是真随机生成比较困难,所以只要能通过一定的随机数统计检测,就可以当作真随机数来使用。

----

最近整理了一份牛逼的学习资料,包括但不限于Java基础部分(JVM、Java集合框架、多线程),还囊括了 **数据库、计算机网络、算法与数据结构、设计模式、框架类Spring、Netty、微服务(Dubbo,消息队列) 网关** 等等等等……详情戳:[可以说是2022年全网最全的学习和找工作的PDF资源了](https://tobebetterjavaer.com/pdf/programmer-111.html)

关注二哥的原创公众号 **沉默王二**,回复**111** 即可免费领取。

![](http://cdn.tobebetterjavaer.com/tobebetterjavaer/images/xingbiaogongzhonghao.png)