- 30 8月, 2019 1 次提交
-
-
由 Jacek Czaja 提交于
- Refactor step 1 - Compilation fix - Yet another compilation fix - Even more compilation fix - Lint fixes test=develop - Removed deprectaed PADDLE_ENFORCE occurance test=develop - Candidate fix to BN forward - Lint fixes test=develop - Refactoring in data_layout_transform - compilation fix - Another comppilation fix - Step further into darkness - Yet another compilation fix - Yet another compilation fix - missing header - compilation fix - Added MKLDNN -> Paddle conversion in fetch op test=develop - Compilation fix test=develop - Lint test=develop - Mul fix - Fix to MKLDNN MUL op and Elementwise MUL UT test=develop - Workaround for diffrent weights with groups representation Paddle vs MKL-DNN. test=develop - Candidate fix for 5D convolution with groups - Refactor of fix for conv3d and conv2d in fetch op test=develop - Compilation fix - Still same compilation fix - Compilation fix - Compilation fix - Reverted refactoring of fixes - Adapted test_conv2d_int8_mkldnn so it exects data in NCHW format not NHWC test=develop - minor fix in UT test=develop - Lint fixes test=develop
-
- 25 7月, 2019 1 次提交
-
-
由 lidanqing 提交于
* change INT8 to template so that checking dst_dt with if-else could be removed. CI will be enabled after fixing reviews * reverse user_residual_memory_p and user_bias_memory_p declaration scope test=develop
-
- 09 7月, 2019 1 次提交
-
-
由 Physher 提交于
-
- 03 12月, 2018 1 次提交
-
-
由 Yihua Xu 提交于
-
- 27 11月, 2018 2 次提交
-
-
由 Michal Gallus 提交于
test=develop
-
由 Jacek Czaja 提交于
test=develop - Added new header for MKLDNN reuse functionality - Extended conv2d_transpose GetExpectedKernelType for MKL-DNN supporrt - Buildable conv transpose mkldnn and conv mkldnn using conv template - Conv2d transpose roughlt implemented and buildable - Added modifications conv2d transpose MKLDNN unit tests - Fix to UT of conv2d transpose mkldnn op - Wrong type of MKLDNN primitive was chosen for conv2d transpose - HAcks for conv2d transpose - UT enalbed - Replaced copying loop with memcpy - Draft of passing lambda into AcquireMemory - Made reorder (IOHW->OIHW) to be called only once
-
- 01 11月, 2018 1 次提交
-
-
由 Tomasz Patejko 提交于
test=develop
-
- 11 9月, 2018 2 次提交
-
-
由 Krzysztof Binias 提交于
-
由 Krzysztof Binias 提交于
-
- 10 9月, 2018 1 次提交
-
-
由 Krzysztof Binias 提交于
-
- 21 8月, 2018 1 次提交
-
-
由 Michał Gallus 提交于
* Fuse Convolution and Eltwise Add into Conv+Bias * Reduce bias branching at conv_mkldnn_op * Add MKLDNN build checks for Conv Bias * Conv-bias: check if bias input exist befor assignment * Conv-bias: Remove Bias dim check from infershape It was causing conv3d test to crash upon\ncalling HasInput(Bias)
-
- 09 8月, 2018 1 次提交
-
-
由 Sylwester Fraczek 提交于
-
- 11 7月, 2018 1 次提交
-
-
由 Jacek Czaja 提交于
* - Rebase of conv reuse - clag formatter fixes - Fix to conv reuse - Yet another fix - Fix - Fix - clagn format * - comment update
-
- 30 6月, 2018 1 次提交
-
-
由 gongweibao 提交于
-
- 28 6月, 2018 1 次提交
-
-
由 mozga-intel 提交于
-
- 21 6月, 2018 3 次提交
-
-
由 Jacek Czaja 提交于
- Added hash function inside of MKLDNN softmax op to be used as handle for primitives stroing in a context - Style fixes to softmax mkldnn op - Fixes after review - Coding style - Fix to style - style fixes - style fix - style fixes - Fix to cody style check - Rephrasing a comment fix t obroken merge Fixes to rebase Conflicts: benchmark/fluid/models/machine_translation.py cmake/external/mkldnn.cmake paddle/fluid/operators/softmax_mkldnn_op.cc - Bumped revision of MKL-DNN up to have softmax backward primitive - Added choosing MKLDNN softmax grad operator - First reuse of softmax backward - Reinvented reusing for softmax - Fix to crash in reinvented reuse - Clang format fixes - Clang format fixes - Improved softmax mkldnn reuse mechanism - clang format fixes - Fix to broken merge - Fix
-
由 tensor-tang 提交于
This reverts commit 4d8e8ee2, reversing changes made to d6a9f005.
-
由 tensor-tang 提交于
-
- 19 6月, 2018 1 次提交
-
-
由 mozga-intel 提交于
-
- 07 6月, 2018 1 次提交
-
-
由 mozga-intel 提交于
* Add MKLDNN layout support in Paddle Add MKLDNN layout in Paddle so that MKLDNN friendly memory layout can be used in MKLDNN enabled OP kernel. Before this commit, NCHW is hardcode to be used in all MKLDNN op kernels. As a result, non-optimized execution path is selected in MKLDNN primitive which bring worse performance. Besides framework change, three MKLDNN OP kernels were updated for using new MKLDNN layout. They are conv/pool2d/batch_norm. Other MKLDNN OP kernels need be also updated in similar way to achieve best performance. * Add MKLDNN layout support in activation OP * Don't populate layout from input to output when kMKLDNN in * Refine pool mkldnn op kernel * MKLDNN layout * Remove the inferitance from tensor file * MKLDNN layout: refactoring * Remove additional #define to register new operator * Prepare mkldnn tests to work with layout
-
- 21 5月, 2018 1 次提交
-
-
由 Krzysztof Binias 提交于
-
- 17 5月, 2018 1 次提交
-
-
由 Jacek Czaja 提交于
- Finished draft of pooling reusing of operators - Using gethash in PoolGrad added - Removed diagnostic - Added pool mkldnn grad reusing of primitives - Added diagnostic - Removed diagnostic - added dependency to mkldnn data type for pooling mkldnn - Added mkldnn memory data type determining based on template type of op - Compilation warning fix - codying style fixes
-
- 17 4月, 2018 1 次提交
-
-
由 mozga-intel 提交于
-
- 10 4月, 2018 1 次提交
-
-
由 Yi Wang 提交于
-
- 23 3月, 2018 2 次提交
-
-
由 Krzysztof Binias 提交于
-
由 Krzysztof Binias 提交于
-
- 07 3月, 2018 1 次提交
-
-
由 pzelazko-intel 提交于
* MKLDNN conv2 OP kernel added * TODOs added * mkldnn conv2d OP refactor * CanCUDNNBeUsed and CanMKLDNNBeUsed moved
-
- 12 2月, 2018 1 次提交
-
-
由 qingqing01 提交于
-
- 10 2月, 2018 1 次提交
-
-
由 Yi Wang 提交于
-
- 05 1月, 2018 1 次提交
-
-
由 tensor-tang 提交于
-
- 03 1月, 2018 2 次提交
-
-
由 tensor-tang 提交于
-
由 tensor-tang 提交于
-
- 04 7月, 2017 1 次提交
-
-
由 liaogang 提交于
-
- 29 6月, 2017 2 次提交
- 25 5月, 2017 1 次提交
-
-
由 Yu Yang 提交于
-
- 09 12月, 2016 1 次提交
-
-
由 Yi Wang 提交于
-
- 29 8月, 2016 1 次提交
-
-
由 zhangjinchao01 提交于
ISSUE=4586495 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1408 1ad973e4-5ce8-4261-8a94-b56d1f490c56
-