- 22 7月, 2022 1 次提交
-
-
由 yuguo 提交于
-
- 18 7月, 2022 1 次提交
-
-
由 Qi Li 提交于
* [Plugin] Fix Custom device in eager mode, test=develop * update test case, test=develop * update ut for coverage, test=develop
-
- 14 6月, 2022 1 次提交
-
-
由 Wilber 提交于
* cmake-lint * update
-
- 09 6月, 2022 1 次提交
-
-
由 minghaoBD 提交于
-
- 06 6月, 2022 1 次提交
-
-
由 Sing_chan 提交于
-
- 02 6月, 2022 1 次提交
-
-
由 ziyoujiyi 提交于
* back fl * delete ssl cert * . * make warning * . * unittest paral degree * solve unittest * heter & multi cloud commm ready * . * . * fl-ps v1.0 * . * support N + N mode * . * . * . * . * delete print * . * . * . * .
-
- 27 5月, 2022 1 次提交
-
-
由 Haipeng Wang 提交于
* experimental nvcc-lazy-module-loading * remove two empty last line from two files
-
- 13 5月, 2022 1 次提交
-
-
由 Leo Chen 提交于
-
- 09 5月, 2022 1 次提交
-
-
由 Qi Li 提交于
-
- 06 5月, 2022 1 次提交
-
-
由 lilong12 提交于
-
- 25 4月, 2022 1 次提交
-
-
由 zhouweiwei2014 提交于
* merge all phi lib to several big static lib * merge all phi lib to several big static lib
-
- 24 4月, 2022 1 次提交
-
-
由 tianshuo78520a 提交于
* Update Mac cmake version >=3.15 * notest;read test1 notest;read test2 notest;read test3 * fix inference link error * fix inference link error * fix windows link error * fix cmake_policy * fix build big size
-
- 15 4月, 2022 1 次提交
-
-
由 ziyoujiyi 提交于
* back fl * delete ssl cert * . * make warning * . * unittest paral degree * solve unittest * heter & multi cloud commm ready * . * . * arm_brpc compile * . * . * . * . * . * . * . * . * . * . * . * . * . * . * only output is ok * base is ok * . * . * . * . * . * . * . * . * add switch server bin * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * adapt brpc ssl * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .
-
- 10 3月, 2022 1 次提交
-
-
由 heliqi 提交于
* add onnxruntime predictor * Add code comments * support link paddle2onnx onnxruntime * support onnxruntime with python * support onnxruntime with python * support onnxruntime with windows * paddle2onnx compile with windows * supoort windows compile * supoort windows compile with onnxruntime * supoort windows compile with paddle2onnx * supoort mac compile * compile with mac * compile with mac * add code comments * fix remind word * code optimization * add test case * add test case * add inference demo_ci test case * fix compile paddle2onnx with no python * add inference demo_ci test case * add inference demo_ci test case * add inference infer_ut test case * support c go api and test cases * add converage test case * add converage test case * add capi test case * add capi test case
-
- 02 3月, 2022 1 次提交
-
-
由 Zhanlue Yang 提交于
* Adjust GPU Arches for Whl releases * Adjusted CUDA arches * fixed minor issue * adjusted gpu arches
-
- 28 2月, 2022 1 次提交
-
-
由 zhangchunle 提交于
* update;test=cpu-py3
-
- 15 2月, 2022 1 次提交
-
-
由 ronnywang 提交于
* [CustomRuntime] Add DeviceManager * [CustomRuntime] Add DeviceInterface * [CustomRuntime] Add Stream, Event, DeviceGuard, CallbackManager * [CustomRuntime] Add plug-in device * [CustomRuntime] Memory module support PluggableDevice * [CustomRuntime] Add WITH_PLUGGABLE_DEVICE cmake option * update * [API] update API doc based on comments, test=develop Co-authored-by: Nqili93 <qili93@qq.com>
-
- 11 2月, 2022 1 次提交
-
-
由 zhangchunle 提交于
-
- 30 1月, 2022 1 次提交
-
-
由 mhhhh1 提交于
-
- 29 1月, 2022 1 次提交
-
-
由 Liu-xiandong 提交于
* Add XPU compiler for paddle, test=develop * clean code * clean useless code * clean useless code * clean useless code * test * add include path * use clang compiler * xpu2.cmake * XPU2 compiler passed * update * update after pten * combination the WITH_XPU and WITH_XPU2 * update the fuse operation in WITH_XPU and WITH_XPU2 * update * update * update * fix the merge error * update * update the code * update the code * add run_kp_kernel flag * update * update * fix prepared type_ bug * clean and update the code * reset the kernel_primitives * update * clean the code * delete useless comment * fix the bug in WITH_XPU * update * update * modify the abi * delete some useless code * Parameter automation in xpu compilation * Parameter automation in xpu compilation * delete kps in cmake * delete useless comment * clean the code * clean the code
-
- 27 1月, 2022 1 次提交
-
-
由 Thunderbrook 提交于
* compile for afs api * with pslib
-
- 23 12月, 2021 1 次提交
-
-
由 zhouweiwei2014 提交于
* add new API: paddle.clone;Tensor.element_size;nn.utils.parameters_to_vector * fix comment
-
- 20 12月, 2021 1 次提交
-
-
由 fwenguang 提交于
-
- 17 12月, 2021 1 次提交
-
-
由 sneaxiy 提交于
-
- 07 12月, 2021 1 次提交
-
-
由 Yan Chunwei 提交于
* add infrt code refined with Paddle's code style. * rename CinnRtConfig to InfRtConfig * rename CinnRt to InfRt of some code * rename CINNRT to INFRT * remove unnecessary code * replace CINN to INFRT in the source code * replace all "cinn" in code to "infrt" * remove some const_cast
-
- 03 12月, 2021 1 次提交
-
-
由 jianghaicheng 提交于
-
- 23 10月, 2021 1 次提交
-
-
由 Huihuang Zheng 提交于
This PR added some changes to match the CINN change for compilation. It also tried to fix JiangCheng's Problem in PR: https://github.com/PaddlePaddle/Paddle/pull/36100 These changes include: 1. Set `CINN_GIT_TAG` to a newer tag 2. CINN now just `make cinnapi -j` 3. We have to add `-DPY_VERSION=${PY_VERSION} -DWITH_TESTING=ON` to CINN cmake args 4. For CINN's third party dependencies, we could just include headers without target_link_libraries 5. Moved `cinn.cmake` from `paddle/cmake` to `paddle/cmake/external` to match old style. External folder contains `lite`, which is the same level of `cinn` 6. CINN added `-DNAMESPACE=cinn_gflags` in `gflags.cmake` to have different gflag namespaces between CINN and Paddle. It solved re-define problem. 7. Change namespace of `::google::` in gflags to `::GFLAGS_NAMESPACE`
-
- 20 10月, 2021 1 次提交
-
-
由 Huihuang Zheng 提交于
Add CINN compile option in CMake. Now you can use CINN in Paddle by `-DWITH_CINN=ON` when `cmake` To test it, you can run `make cinn_lib_test -j` and `ctest -R cinn_lib_test`. Note: 1. You should set ``` export runtime_include_dir=${CINN_SOURCE_DIR}/cinn/runtime/cuda ``` When run test, the `${CINN_SOURCE_DIR}` should be set based on your CINN directory. 2. CINN is under developing now, you may have to change `CINN_GIT_TAG` to the git commit you need.
-
- 18 9月, 2021 1 次提交
-
-
由 Feiyu Chan 提交于
* 1. add interface for fft; 2. add data type predicate; 3. fix paddle.roll. * add fft c2c cufft kernel * implement argument checking & op calling parts for fft_c2c and fftn_c2c * add operator and opmaker definitions * only register float and double for cpu. * add common code for implementing FFT, add pocketfft as a dependency * add fft c2c cufft kernel function * fix bugs in python interface * add support for c2r, r2c operators, op makers, kernels and kernel functors. * test and fix bugs * 1. fft_c2c function: add support for onesided=False; 2. add complex<float>, complex<double> support for concat and flip. * 1. fft: fix python api bugs; 2. shape_op: add support for complex data types. * fft c2c cufft kernel done with complie and link * fix shape_op, add mkl placeholder * remove mkl * complete fft c2c in gpu * 1. implement mkl-based fft, FFTC2CFunctor and common function exec_fft; 2. change the design, add input and output typename as template parameter for all FFTFunctors, update pocketfft-based implementation. * complete fft c2c on gpu in ND * complete fft c2c on gpu in ND * complete fft c2c backward in ND * fix MKL-based implementation * Add frame op and CPU/GPU kernels. * Add frame op forward unittest. * Add frame op forward unittest. * Remove axis parameter in FrameFunctor. * Add frame op grad CPU/GPU kernels and unittest. * Add frame op grad CPU/GPU kernels and unittest. * Update doc string. * Update after review and remove librosa requirement in unittest. * Update grad kernel. * add fft_c2r op * Remove data allocation in TransCompute function. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * last fft c2r functor * fix C2R and R2C for cufft, becase the direction is not an option in these cases. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * fix bugs in python APIs * fix fft_c2r grad kernal * fix bugs in python APIs * add cuda fft c2r grad kernal functor * clean code * fix fft_c2r python API * fill fft r2c result with conjugate symmetry (#19) fill fft r2c result with conjugate symmetry * add placeholder for unittests (#24) * simple parameterize test function by auto generate test case from parm list (#25) * miscellaneous fixes for python APIs (#26) * add placeholder for unittests * resize fft inputs before computation is n or s is provided. * add complex kernels for pad and pad_grad * simplify argument checking. * add type promotion * add int to float or complex promotion * fix output data type for static mode * fix fft's input dtype dispatch, import fft to paddle * fix typos in axes checking (#27) * fix typos in axes checking * fix argument checking (#28) * fix argument checking * Add C2R Python layer normal and abnormal use cases (#29) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string (#30) * Documentation of the common interfaces of c2r and c2c (#31) * Documentation of the common interfaces of c2r and c2c * clean c++ code (#32) * clean code * Add numpy-based implementation of spectral ops (#33) * add numpy reference implementation of spectral ops * Add fft_c2r numpy based implementation for unittest. (#34) * add fft_c2r numpy implementation * Add deframe op and stft/istft api. (#23) * Add frame api * Add deframe op and kernels. * Add stft and istft apis. * Add deframe api. Update stft and istft apis. * Fix bug in frame_from_librosa function when input dims >= 3 * Rename deframe to overlap_add. * Update istft. * Update after code review. * Add overlap_add op and stft/istft api unittest (#35) * Add overlap_add op unittest. * Register complex kernels of squeeze/unsquuze op. * Add stft/istft api unittest. * Add unittest for fft helper functions (#36) * add unittests for fft helper functions. add complex kernel for roll op. * complete static graph unittest for all public api (#37) * Unittest of op with FFT C2C, C2R and r2c added (#38) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * Documentation of the common interfaces of c2r and c2c * Unittest of op with FFT C2C, C2R and r2c added Co-authored-by: lijiaqi <lijiaqi0612@163.com> * add fft related options to CMakeLists.txt * fix typos and clean code (#39) * fix invisible character in mkl branch and fix error in error message * clean code: remove docstring from unittest for signal.py. * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. (#40) * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. * fix CI Errors: numpy dtype comparison, thrust when cuda is not available (#41) 1. always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. 2. promote floating point tensor to complex tensor ior fft_c2c and fft_c2r; 3. fix unittest to catch UnImplementedError and RuntimeError; 4. fix compile error by avoid using thrust when cuda is not available. 5. fix sample code, use paddle.fft instead of paddle.tensor.fft * remove inclusion of thrust, add __all__ list for fft (#42) * Add api doc and update unittest. (#43) * Add doc strings. * Update overlap_add op unittest * fix MKL-based FFT implementation (#44) * fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R * remove code for debug (#45) * use dynload for cufft (#46) * use std::ptrdiff_t as datatype of stride (instead of int64_t) to avoid argument mismatch on some platforms. * add complex support for fill_zeros_like * use dynload for cufft * Update doc and unittest. (#47) * Add doc of frame op and overlap_add op. * Update unittest. * use dynload for cufft (#48) 1. use dynload for cufft 2. fix unittest; 3. temporarily disable Rocm. * fix conflicts and merge upstream (#49) fix conflicts and merge upstream * fix compile error: only link dyload_cuda when cuda is available (#50) * fix compile error: only link dyload_cuda when cuda is available * fix dynload for cufft on windows (#51) 1. fix dynload for cufft on windows; 2. fix unittests. * add NOMINMAX to compile on windows (#52) add NOMINMAX to compile on windows * explicitly specify capture mode for lambdas (#55) explicitly specify capture mode for lambdas * fix fft sample (#53) * fix fft sample * update scipy and numpy version for unittests of fft (#56) update scipy and numpy version for unittests of fft * Add static graph unittests of frame and overlap_add api. (#57) * Remove cache of cuFFT & Disable ONEMKL (#59) 1. replace numpy.fft with scipy.fft as numpy<1.20 not support ortho norm 2. remove cache of cufft plans; 3. enhance error checking. 4. default WITH_ONEMKL to OFF Co-authored-by: Njeff41404 <jeff41404@gmail.com> Co-authored-by: Nroot <root@bjyz-sys-gpu-kongming9.bjyz.baidu.com> Co-authored-by: NKP <109694228@qq.com> Co-authored-by: lijiaqi <lijiaqi0612@163.com> Co-authored-by: NXiaoxu Chen <chenxx_id@163.com> Co-authored-by: Nlijiaqi0612 <33169170+lijiaqi0612@users.noreply.github.com>
-
- 03 9月, 2021 1 次提交
-
-
由 Qi Li 提交于
* [NPU] add int64 kernels, test=develop * update ci scripts to be able to trun WITH_ASCEND_INT64 on, test=develop
-
- 31 8月, 2021 1 次提交
-
-
由 Zhanlue Yang 提交于
[Background] Expansion in code size can be irreversible in the long run, leading to huge release packages which not only hampers user experience but also exceeds a hard limit of pypi. In such, NV_FATBIN section takes up 86% of the compiled dylib size, owing to the vast number of GPU arches supported. This PR aims to prune this NV_FATBIN. [Solution] In the new release strategy, two types of whl packages will be involved: Cubin PIP package: PIP package maintains a smaller window for GPU arches support, containing sm_60, sm_70, sm_75, sm_80 cubins, covering Pascal - Ampere arches JIT release package: This is a backup for Cubin PIP package, containing compute_35, compute_50, compute_60, compute_70, compute_75, compute_80, with best performance and GPU arches coverage. However, it takes around 10 min to install due to the JIT compilation. [How to use] The new release strategy is disabled by default. To compile for Cubin PIP package, add this to cmake: -DCUBIN_RELEASE_PIP To compile for JIT release package, add this to cmake: -DJIT_RELEASE_WHL
-
- 09 8月, 2021 1 次提交
-
-
由 zhouweiwei2014 提交于
-
- 22 7月, 2021 1 次提交
-
-
由 Qi Li 提交于
* [NPU] update NPU ci tests, test=npu_aarch64 * [NPU] fix x86 build and add disable_ut for NPU, test=npu_aarch64 * [NPU] address review comments, test=develop
-
- 21 7月, 2021 1 次提交
-
-
由 zhouweiwei2014 提交于
* polish windows compile for Ninja, fix random compile fail * polish windows compile for Ninja, fix random compile fail
-
- 14 7月, 2021 2 次提交
-
-
由 tianshuo78520a 提交于
* Support Mac M1 make * cmake version check
-
由 zhouweiwei2014 提交于
* Support sccache to speed up compilation on Windows * Support sccache to speed up compilation on Windows
-
- 17 6月, 2021 1 次提交
-
-
由 tianshuo78520a 提交于
-
- 16 6月, 2021 1 次提交
-
-
由 tianshuo78520a 提交于
-
- 02 6月, 2021 1 次提交
-
-
由 Qi Li 提交于
-
- 26 5月, 2021 1 次提交
-
-
由 Zhou Wei 提交于
* fix ninja compilation bug on windows * polish windows ci * polish windows ci
-