Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
fe35496b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fe35496b
编写于
9月 22, 2021
作者:
A
Aurelius84
提交者:
GitHub
9月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify H2D and D2H as kQueue::Sync and Polish Schedule logic (#35866)
* Modify H2D and D2H as kQueue::Sync * fix interface error
上级
ae65257d
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
79 addition
and
66 deletion
+79
-66
paddle/fluid/framework/new_executor/event_manager.cc
paddle/fluid/framework/new_executor/event_manager.cc
+5
-15
paddle/fluid/framework/new_executor/event_manager.h
paddle/fluid/framework/new_executor/event_manager.h
+0
-4
paddle/fluid/framework/new_executor/interpretercore.cc
paddle/fluid/framework/new_executor/interpretercore.cc
+1
-2
paddle/fluid/framework/new_executor/interpretercore.h
paddle/fluid/framework/new_executor/interpretercore.h
+0
-1
paddle/fluid/framework/new_executor/interpretercore_util.cc
paddle/fluid/framework/new_executor/interpretercore_util.cc
+3
-1
paddle/fluid/framework/new_executor/new_executor_defs.h
paddle/fluid/framework/new_executor/new_executor_defs.h
+16
-8
paddle/fluid/framework/new_executor/stream_analyzer.cc
paddle/fluid/framework/new_executor/stream_analyzer.cc
+44
-31
paddle/fluid/framework/new_executor/stream_analyzer.h
paddle/fluid/framework/new_executor/stream_analyzer.h
+10
-4
未找到文件。
paddle/fluid/framework/new_executor/event_manager.cc
浏览文件 @
fe35496b
...
...
@@ -24,9 +24,12 @@ void EventManager::WaitEvent(const Instruction& instruction,
VLOG
(
3
)
<<
"Deal StreamWaitEventOrSync for "
<<
instruction
.
kernel_func_
.
operator_base_
->
Type
();
auto
*
dev_ctx
=
instruction
.
dev_ctx_
;
WaitOrSync
(
instruction
.
intput_events_
,
dev_ctx
);
for
(
auto
&
event_iter
:
instruction
.
intput_events_
)
{
VLOG
(
3
)
<<
"wait var_id: "
<<
event_iter
.
var_id_
<<
" 's event with waiter_type: "
<<
event_iter
.
waiter_type_
;
event_iter
.
event_
->
Wait
(
event_iter
.
waiter_type_
,
instruction
.
dev_ctx_
);
}
}
void
EventManager
::
RecordEvent
(
const
Instruction
&
instruction
,
...
...
@@ -40,18 +43,5 @@ void EventManager::RecordEvent(const Instruction& instruction,
}
}
void
EventManager
::
WaitOrSync
(
const
std
::
vector
<
EventInter
>&
events
,
const
platform
::
DeviceContext
*
dev_ctx
)
{
for
(
auto
&
event_iter
:
events
)
{
if
(
event_iter
.
is_sync_
)
{
VLOG
(
3
)
<<
"host sync wait in_var_id "
<<
event_iter
.
var_id_
;
event_iter
.
event_
->
Wait
(
platform
::
kCPU
,
dev_ctx
);
}
else
{
VLOG
(
3
)
<<
"stream async wait in_var_id "
<<
event_iter
.
var_id_
;
event_iter
.
event_
->
Wait
(
platform
::
kCUDA
,
dev_ctx
);
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/event_manager.h
浏览文件 @
fe35496b
...
...
@@ -24,10 +24,6 @@ class EventManager {
const
platform
::
Place
&
place
);
void
WaitEvent
(
const
Instruction
&
instruction
,
const
platform
::
Place
&
place
);
private:
void
WaitOrSync
(
const
std
::
vector
<
EventInter
>&
events
,
const
platform
::
DeviceContext
*
dev_ctx
);
};
}
// namespace framework
...
...
paddle/fluid/framework/new_executor/interpretercore.cc
浏览文件 @
fe35496b
...
...
@@ -183,8 +183,7 @@ void InterpreterCore::Convert() {
}
}
stream_analyzer_
.
Schedule
(
vec_func_list_
,
filter_next
,
i
,
&
vec_instruction_
);
stream_analyzer_
.
Schedule
(
filter_next
,
&
vec_instruction_
,
i
);
for
(
auto
inst_id
:
filter_next
)
{
dependecy_count_
[
inst_id
]
++
;
...
...
paddle/fluid/framework/new_executor/interpretercore.h
浏览文件 @
fe35496b
...
...
@@ -99,7 +99,6 @@ class InterpreterCore {
InterpreterCoreGarbageCollector
gc_
;
std
::
vector
<
paddle
::
platform
::
DeviceEvent
>
gc_event_
;
std
::
unique_ptr
<
WorkQueueGroup
>
group_thread_pool_
;
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/interpretercore_util.cc
浏览文件 @
fe35496b
...
...
@@ -365,7 +365,9 @@ void build_op_func_list(const platform::Place& place,
OpKernelComputeFunc
(
kernel_iter
->
second
);
copy_op_func_node
.
kernel_func_
(
copy_exec_ctx
);
VLOG
(
3
)
<<
"Run "
<<
memcpy_op_type
<<
" done."
;
copy_op_func_node
.
type_
=
OpFuncType
::
kQueueAsync
;
// NOTE(Aurelius84): memcpy_op is expensive operation, so we tag them
// as kQueueSync and execute them in thread pool.
copy_op_func_node
.
type_
=
OpFuncType
::
kQueueSync
;
copy_op_func_node
.
dev_ctx_
=
dev_ctx
;
op_list
->
push_back
(
copy_op
);
vec_func_list
->
push_back
(
copy_op_func_node
);
...
...
paddle/fluid/framework/new_executor/new_executor_defs.h
浏览文件 @
fe35496b
...
...
@@ -25,11 +25,6 @@
namespace
paddle
{
namespace
framework
{
namespace
interpretercore
{
static
constexpr
char
kMemcpyH2D
[]
=
"memcpy_h2d"
;
static
constexpr
char
kMemcpyD2H
[]
=
"memcpy_d2h"
;
}
// namespace interpretercore
using
OpKernelComputeFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelComputeFunc
,
OpKernelType
::
Hash
>
;
...
...
@@ -496,11 +491,11 @@ struct NextInstruction {
struct
EventInter
{
explicit
EventInter
(
size_t
var_id
,
std
::
shared_ptr
<
platform
::
DeviceEvent
>
event
,
bool
is_sync
)
:
var_id_
(
var_id
),
event_
(
event
),
is_sync_
(
is_sync
)
{}
platform
::
DeviceType
waiter_type
)
:
var_id_
(
var_id
),
event_
(
event
),
waiter_type_
(
waiter_type
)
{}
size_t
var_id_
;
std
::
shared_ptr
<
platform
::
DeviceEvent
>
event_
;
bool
is_sync
_
;
platform
::
DeviceType
waiter_type
_
;
};
struct
InstructionInfo
{
...
...
@@ -543,5 +538,18 @@ struct OpFuncNode {
OpFuncType
type_
;
};
namespace
interpretercore
{
static
constexpr
char
kMemcpyH2D
[]
=
"memcpy_h2d"
;
static
constexpr
char
kMemcpyD2H
[]
=
"memcpy_d2h"
;
static
bool
IsMemcpyH2D
(
const
Instruction
&
instr
)
{
return
instr
.
kernel_func_
.
operator_base_
->
Type
()
==
kMemcpyH2D
;
}
static
bool
IsMemcpyD2H
(
const
Instruction
&
instr
)
{
return
instr
.
kernel_func_
.
operator_base_
->
Type
()
==
kMemcpyD2H
;
}
}
// namespace interpretercore
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/stream_analyzer.cc
浏览文件 @
fe35496b
...
...
@@ -22,7 +22,7 @@ namespace framework {
* Parse the var_ids that need to be associated with an event.
* The caller should guarantee front_op and back_op satisfy the
* following conditions:
* 1. kQueue
As
ync -> kQueueAsync
* 1. kQueue
S
ync -> kQueueAsync
* 2. kQueueAsync -> kQueueSync
*
* For example: matmul(gpu) -> out_var -> memcpy_d2h
...
...
@@ -48,7 +48,7 @@ std::vector<size_t> StreamAnalyzer::ParseEventVarIds(
void
StreamAnalyzer
::
AssociateInputWithEvents
(
const
std
::
vector
<
size_t
>&
new_event_var_id
,
Instruction
*
next_instr
,
bool
is_sync
)
{
platform
::
DeviceType
waiter_type
)
{
for
(
auto
var_id
:
new_event_var_id
)
{
if
(
var_id2event_
.
count
(
var_id
)
==
0
)
{
auto
device_event
=
std
::
make_shared
<
platform
::
DeviceEvent
>
(
...
...
@@ -57,52 +57,43 @@ void StreamAnalyzer::AssociateInputWithEvents(
}
// Add events for next_instr.inputs
next_instr
->
intput_events_
.
emplace_back
(
var_id
,
var_id2event_
.
at
(
var_id
),
is_sync
);
waiter_type
);
}
}
void
StreamAnalyzer
::
Schedule
(
const
std
::
vector
<
OpFuncNode
>&
op_func_nodes
,
const
std
::
vector
<
size_t
>&
downstream_ops
,
size_t
op_index
,
std
::
vector
<
Instruction
>*
instructions
)
{
auto
&
op_func_type
=
op_func_nodes
[
op_index
].
type_
;
void
StreamAnalyzer
::
Schedule
(
const
std
::
vector
<
size_t
>&
downstream_ops
,
std
::
vector
<
Instruction
>*
instructions
,
size_t
op_index
)
{
auto
&
cur_instr
=
instructions
->
at
(
op_index
);
auto
&
next_instruction
=
cur_instr
.
next_instruction_
;
std
::
vector
<
size_t
>
event_var_ids
;
for
(
auto
next_op_id
:
downstream_ops
)
{
auto
&
next_instr
=
instructions
->
at
(
next_op_id
);
if
(
op_func_type
==
OpFuncType
::
kQueueSync
)
{
// all downstream ops of kQueueSync can directly run, such as CPU -> Any
next_instruction
.
direct_run_
=
downstream_ops
;
}
else
{
// kQueueAsync
std
::
vector
<
size_t
>
event_var_ids
;
for
(
auto
next_op_id
:
downstream_ops
)
{
auto
&
next_instr
=
instructions
->
at
(
next_op_id
);
// case 1: GPU -> GPU(same stream)
if
(
cur_instr
.
dev_ctx_
==
next_instr
.
dev_ctx_
)
{
next_instruction
.
direct_run_
.
emplace_back
(
next_op_id
);
continue
;
}
if
(
IsDirectRun
(
cur_instr
,
next_instr
))
{
next_instruction
.
direct_run_
.
emplace_back
(
next_op_id
);
}
else
{
// Always insert events between different stream
auto
new_event_var_ids
=
ParseEventVarIds
(
cur_instr
,
next_instr
);
event_var_ids
.
insert
(
event_var_ids
.
end
(),
new_event_var_ids
.
begin
(),
new_event_var_ids
.
end
());
bool
is_sync
=
(
op_func_nodes
[
next_op_id
].
type_
==
OpFuncType
::
kQueueSync
);
AssociateInputWithEvents
(
new_event_var_ids
,
&
next_instr
,
is_sync
);
auto
waiter_type
=
GetWaiterType
(
next_instr
);
AssociateInputWithEvents
(
new_event_var_ids
,
&
next_instr
,
waiter_type
);
if
(
is_sync
)
{
// GPU -> CPU
if
(
waiter_type
==
platform
::
kCPU
)
{
// GPU -> CPU
next_instruction
.
synchronize_run_
.
emplace_back
(
next_op_id
);
}
else
{
// GPU -> GPU(different stream)
next_instruction
.
event_wait_run_
.
emplace_back
(
next_op_id
);
}
}
// Create events for these cross-stream vars
VLOG
(
3
)
<<
cur_instr
.
kernel_func_
.
operator_base_
->
Type
()
<<
" event_var_ids.size: "
<<
event_var_ids
.
size
();
for
(
auto
var_id
:
event_var_ids
)
{
cur_instr
.
output_events_
.
emplace_back
(
var_id
,
var_id2event_
.
at
(
var_id
),
false
/*not used*/
);
}
}
// Create events for these cross-stream vars
VLOG
(
3
)
<<
cur_instr
.
kernel_func_
.
operator_base_
->
Type
()
<<
" event_var_ids.size: "
<<
event_var_ids
.
size
();
for
(
auto
var_id
:
event_var_ids
)
{
cur_instr
.
output_events_
.
emplace_back
(
var_id
,
var_id2event_
.
at
(
var_id
),
platform
::
kCUDA
/*not used*/
);
}
}
...
...
@@ -121,5 +112,27 @@ platform::DeviceContext* StreamAnalyzer::ParseDeviceContext(
return
dev_ctx
;
}
/*
* NOTE(dev): The following cases are considered as directly run:
*
* 1. with same dev_ctx_, such as: CPU -> CPU, GPU -> GPU
* 2. D2H -> CPU
* 3. CPU -> H2D
*/
bool
StreamAnalyzer
::
IsDirectRun
(
Instruction
&
cur_instr
,
const
Instruction
&
next_instr
)
{
return
(
cur_instr
.
dev_ctx_
==
next_instr
.
dev_ctx_
||
interpretercore
::
IsMemcpyD2H
(
cur_instr
)
||
interpretercore
::
IsMemcpyH2D
(
next_instr
));
}
platform
::
DeviceType
StreamAnalyzer
::
GetWaiterType
(
const
Instruction
&
instr
)
{
if
(
instr
.
type_
==
OpFuncType
::
kQueueSync
)
{
return
platform
::
kCPU
;
}
else
{
return
platform
::
kCUDA
;
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/stream_analyzer.h
浏览文件 @
fe35496b
...
...
@@ -29,9 +29,8 @@ class StreamAnalyzer {
~
StreamAnalyzer
()
{}
void
Schedule
(
const
std
::
vector
<
OpFuncNode
>&
op_func_nodes
,
const
std
::
vector
<
size_t
>&
downstream_ops
,
size_t
op_index
,
std
::
vector
<
Instruction
>*
instructions
);
void
Schedule
(
const
std
::
vector
<
size_t
>&
downstream_ops
,
std
::
vector
<
Instruction
>*
instructions
,
size_t
op_index
);
platform
::
DeviceContext
*
ParseDeviceContext
(
const
OpFuncNode
&
op_func_node
,
const
OperatorBase
&
op_base
);
...
...
@@ -41,7 +40,14 @@ class StreamAnalyzer {
const
Instruction
&
next_instr
);
void
AssociateInputWithEvents
(
const
std
::
vector
<
size_t
>&
new_event_var_id
,
Instruction
*
next_instr
,
bool
is_sync
);
Instruction
*
next_instr
,
platform
::
DeviceType
waiter_type
);
bool
IsDirectRun
(
Instruction
&
cur_instr
,
// NOLINT
const
Instruction
&
next_instr
);
platform
::
DeviceType
GetWaiterType
(
const
Instruction
&
instr
);
platform
::
Place
place_
;
platform
::
DeviceContextPool
d2h_ctx_pool_
;
platform
::
DeviceContextPool
h2d_ctx_pool_
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录