未验证 提交 fd9d6fda 编写于 作者: A AshburnLee 提交者: GitHub

[cherry-pick]Add tf32 support for A100 tensor core acceleration for cuBLAS (#28732) (#30612)

* Add tf32 support for A100 tensor core acceleration for cuBLAS (#28732)

* Fixed an error

* Fixed an error
上级 228c1d7c
......@@ -84,8 +84,13 @@ class CublasHandleHolder {
if (math_type == CUBLAS_TENSOR_OP_MATH) {
PADDLE_RETRY_CUDA_SUCCESS(
dynload::cublasSetMathMode(handle_, CUBLAS_TENSOR_OP_MATH));
#if CUDA_VERSION >= 11000
} else if (math_type == CUBLAS_TF32_TENSOR_OP_MATH) {
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cublasSetMathMode(handle_, CUBLAS_TF32_TENSOR_OP_MATH));
#endif // CUDA_VERSION >= 11000
}
#endif
#endif // CUDA_VERSION >= 9000
}
~CublasHandleHolder() PADDLE_MAY_THROW {
......
......@@ -198,7 +198,11 @@ class CUDAContext {
/*! \brief Call cublas function safely. */
template <typename Callback>
inline void CublasCall(Callback&& callback) const {
cublas_handle_->Call(std::forward<Callback>(callback));
if (cublas_tf32_tensor_core_handle_) {
cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
} else {
cublas_handle_->Call(std::forward<Callback>(callback));
}
}
/*! \brief Check whether tensor core is supported */
......@@ -225,7 +229,11 @@ class CUDAContext {
#if CUDA_VERSION >= 9000
cublas_tensor_core_handle_.reset(
new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
#if CUDA_VERSION >= 11000
cublas_tf32_tensor_core_handle_.reset(
new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif // CUDA_VERSION >= 11000
#endif // CUDA_VERSION >= 9000
}
}
......@@ -268,6 +276,7 @@ class CUDAContext {
void DestoryCuBlasContext() {
cublas_handle_.reset();
cublas_tensor_core_handle_.reset();
cublas_tf32_tensor_core_handle_.reset();
}
void DestoryCuSolverContext() {
......@@ -284,6 +293,7 @@ class CUDAContext {
cudnnHandle_t cudnn_handle_;
std::unique_ptr<CublasHandleHolder> cublas_handle_;
std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
cusolverDnHandle_t cusolver_dn_handle_;
DISABLE_COPY_AND_ASSIGN(CUDAContext);
};
......
......@@ -58,6 +58,7 @@ limitations under the License. */
#include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/init.h"
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import six
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
class TestTF32Switch(unittest.TestCase):
def test_on_off(self):
if core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.assertTrue(core.get_cublas_switch()) # default
core.set_cublas_switch(False)
self.assertFalse(core.get_cublas_switch()) # turn off
core.set_cublas_switch(True)
self.assertTrue(core.get_cublas_switch()) # turn on
core.set_cublas_switch(True) # restore the switch
else:
pass
class TestTF32OnMatmul(unittest.TestCase):
def test_dygraph_without_out(self):
if core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
core.set_cublas_switch(False) # turn off
with fluid.dygraph.guard(place):
input_array1 = np.random.rand(4, 12, 64, 88).astype("float32")
input_array2 = np.random.rand(4, 12, 88, 512).astype("float32")
data1 = paddle.to_tensor(input_array1)
data2 = paddle.to_tensor(input_array2)
out = paddle.matmul(data1, data2)
expected_result = np.matmul(input_array1, input_array2)
self.assertTrue(np.allclose(expected_result, out.numpy(), 1e-03))
core.set_cublas_switch(True) # restore the switch
else:
pass
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册