未验证 提交 fcf370e6 编写于 作者: Z Zeng Jinle 提交者: GitHub

Merge pull request #13773 from sneaxiy/seq_executor

Enable sequential execution mode in parallel executor
...@@ -35,13 +35,15 @@ if(WITH_GPU) ...@@ -35,13 +35,15 @@ if(WITH_GPU)
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass) all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass)
endif() endif()
cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass)
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle) scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
if(WITH_GPU) if(WITH_GPU)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass sequential_execution_pass)
else() else()
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto sequential_execution_pass)
endif() endif()
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
......
...@@ -16,6 +16,7 @@ limitations under the License. */ ...@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h"
...@@ -27,6 +28,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -27,6 +28,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
public: public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy) explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
: ir::PassBuilder(), strategy_(strategy) { : ir::PassBuilder(), strategy_(strategy) {
if (strategy_.enable_sequential_execution_) {
AppendPass("sequential_execution_pass");
}
// Add a graph viz pass to record a graph. // Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) { if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass"); auto viz_pass = AppendPass("graph_viz_pass");
...@@ -110,6 +115,11 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply( ...@@ -110,6 +115,11 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->Erase("nccl_ctxs"); pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx); pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif #endif
} else if (pass->Type() == "sequential_execution_pass") {
pass->Erase(kAllOpDescs);
pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
} }
graph = pass->Apply(std::move(graph)); graph = pass->Apply(std::move(graph));
} }
...@@ -125,3 +135,4 @@ USE_PASS(multi_batch_merge_pass); ...@@ -125,3 +135,4 @@ USE_PASS(multi_batch_merge_pass);
USE_PASS(multi_devices_pass); USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass); USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass); USE_PASS(multi_devices_print_pass);
USE_PASS(sequential_execution_pass);
...@@ -69,6 +69,8 @@ struct BuildStrategy { ...@@ -69,6 +69,8 @@ struct BuildStrategy {
bool enable_data_balance_{false}; bool enable_data_balance_{false};
bool enable_sequential_execution_{false};
bool fuse_broadcast_op_{false}; bool fuse_broadcast_op_{false};
// User normally doesn't need to call this API. // User normally doesn't need to call this API.
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
namespace details {
static bool IsSameOpDesc(OpDesc *op1, OpDesc *op2) {
return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() &&
op1->Outputs() == op2->Outputs();
}
std::unique_ptr<ir::Graph> SequentialExecutionPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
// FIXME(zjl): Insert dependencies between some distributed ops may cause
// the multi_devices_graph_pass fails. So we skip these ops here.
// Indeed, maybe we should not insert dependencies between these ops
// casually, which may cause deadlock easily.
// We should add more skipped distributed ops when found errors in
// multi_devices_graph_pass
static std::unordered_set<std::string> skip_dist_ops{
"send", "recv", "send_barrier", "fetch_barrier"};
auto &ops = Get<const std::vector<OpDesc *>>(kAllOpDescs);
std::vector<ir::Node *> op_node_list;
op_node_list.reserve(ops.size());
std::unordered_map<ir::Node *, size_t> op_deps;
std::unordered_map<ir::Node *, std::unordered_set<ir::Node *>> pending_ops;
std::unordered_set<ir::Node *> ready_ops;
for (ir::Node *node : graph->Nodes()) {
if (!node->IsOp()) continue;
std::unordered_set<ir::Node *> preceding_ops;
for (auto *in : node->inputs) {
PADDLE_ENFORCE(in->IsVar(),
"Preceding Node of Op Nodes must be Var Node");
if (in->inputs.empty()) continue;
PADDLE_ENFORCE(in->inputs.size() == 1 && in->inputs[0]->IsOp(),
"Preceding Op Node of Var Node must be unique");
preceding_ops.insert(in->inputs[0]);
pending_ops[in->inputs[0]].insert(node);
}
op_deps[node] = preceding_ops.size();
if (preceding_ops.empty()) {
ready_ops.insert(node);
}
}
for (auto *op_desc : ops) {
ir::Node *found_node = nullptr;
for (auto *node : ready_ops) {
if (IsSameOpDesc(op_desc, node->Op())) {
PADDLE_ENFORCE(found_node == nullptr,
"Found multiple op_desc in graph: %s", op_desc->Type());
found_node = node;
}
}
PADDLE_ENFORCE_NOT_NULL(found_node, "Cannot find op_desc in graph: %s",
op_desc->Type());
for (auto *pending_op : pending_ops[found_node]) {
if (--op_deps.at(pending_op) == 0) {
ready_ops.insert(pending_op);
}
}
ready_ops.erase(found_node);
if (skip_dist_ops.count(op_desc->Type()) == 0) {
op_node_list.push_back(found_node);
}
}
for (size_t i = 1; i < op_node_list.size(); ++i) {
auto *dep_var = graph->CreateControlDepVar();
op_node_list[i]->inputs.push_back(dep_var);
op_node_list[i - 1]->outputs.push_back(dep_var);
dep_var->outputs.push_back(op_node_list[i]);
dep_var->inputs.push_back(op_node_list[i - 1]);
VLOG(10) << "Add dependencies between " << op_node_list[i - 1]->Name()
<< " and " << op_node_list[i]->Name();
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(sequential_execution_pass,
paddle::framework::details::SequentialExecutionPass)
.RequirePassAttr(paddle::framework::details::kAllOpDescs);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
constexpr char kAllOpDescs[] = "all_op_descs";
class SequentialExecutionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -821,6 +821,13 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -821,6 +821,13 @@ All parameter, weight, gradient are variables in Paddle.
[](BuildStrategy &self, bool b) { [](BuildStrategy &self, bool b) {
self.enable_data_balance_ = b; self.enable_data_balance_ = b;
}) // FIXME(chengudo): enable_data_balance seems not important }) // FIXME(chengudo): enable_data_balance seems not important
.def_property("enable_sequential_execution",
[](const BuildStrategy &self) {
return self.enable_sequential_execution_;
},
[](BuildStrategy &self, bool b) {
self.enable_sequential_execution_ = b;
})
.def_property( .def_property(
"fuse_elewise_add_act_ops", "fuse_elewise_add_act_ops",
[](const BuildStrategy &self) { [](const BuildStrategy &self) {
......
...@@ -40,7 +40,8 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -40,7 +40,8 @@ class TestParallelExecutorBase(unittest.TestCase):
use_reduce=False, use_reduce=False,
fuse_elewise_add_act_ops=False, fuse_elewise_add_act_ops=False,
optimizer=fluid.optimizer.Adam, optimizer=fluid.optimizer.Adam,
use_fast_executor=False): use_fast_executor=False,
enable_sequential_execution=False):
def run_executor(exe, feed, fetch_list, program=None): def run_executor(exe, feed, fetch_list, program=None):
if isinstance(exe, fluid.ParallelExecutor): if isinstance(exe, fluid.ParallelExecutor):
res = exe.run(fetch_list=fetch_list, feed=feed) res = exe.run(fetch_list=fetch_list, feed=feed)
...@@ -80,6 +81,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -80,6 +81,7 @@ class TestParallelExecutorBase(unittest.TestCase):
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \ build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \
if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops
build_strategy.enable_sequential_execution = enable_sequential_execution
if use_parallel_executor: if use_parallel_executor:
exe = fluid.ParallelExecutor( exe = fluid.ParallelExecutor(
......
...@@ -232,6 +232,46 @@ class TestResnet(TestParallelExecutorBase): ...@@ -232,6 +232,46 @@ class TestResnet(TestParallelExecutorBase):
for loss in zip(all_reduce_last_loss, reduce_last_loss): for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2) self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
if not use_cuda:
return
all_reduce_first_loss_seq, all_reduce_last_loss_seq = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=False,
optimizer=optimizer,
enable_sequential_execution=True)
reduce_first_loss_seq, reduce_last_loss_seq = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=True,
optimizer=optimizer,
enable_sequential_execution=True)
for loss in zip(all_reduce_first_loss, all_reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, all_reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
for loss in zip(reduce_first_loss, reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(reduce_last_loss, reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
for loss in zip(all_reduce_first_loss_seq, reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss_seq, reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
def _check_resnet_convergence(self, def _check_resnet_convergence(self,
model, model,
use_cuda=True, use_cuda=True,
......
...@@ -173,6 +173,8 @@ class TestTransformer(TestParallelExecutorBase): ...@@ -173,6 +173,8 @@ class TestTransformer(TestParallelExecutorBase):
def test_main(self): def test_main(self):
if core.is_compiled_with_cuda(): if core.is_compiled_with_cuda():
self.check_network_convergence(transformer, use_cuda=True) self.check_network_convergence(transformer, use_cuda=True)
self.check_network_convergence(
transformer, use_cuda=True, enable_sequential_execution=True)
self.check_network_convergence(transformer, use_cuda=False, iter=5) self.check_network_convergence(transformer, use_cuda=False, iter=5)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册