提交 fac3b55a 编写于 作者: J jiweibo

update.

上级 1536d293
......@@ -96,6 +96,7 @@ def scope_guard(scope):
import paddle
import numpy
paddle.enable_static()
new_scope = paddle.static.Scope()
with paddle.static.scope_guard(new_scope):
......
......@@ -13511,14 +13511,14 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
:api_attr: Static Graph
This OP is used to register customized Python OP to Paddle. The design
principe of py_func is that LodTensor and numpy array can be converted to each
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is
the output of ``func``, whose type can be either LoDTensor or numpy array.
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If some variables of ``out`` have no gradient, the
......@@ -13536,14 +13536,14 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert LoDTensor into a numpy array, so that we can use Python and
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``.
It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or
It can be Variable|tuple(Variale)|list[Variale], where Variable is Tensor or
Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
or list[Variale].
out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``,
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either Tensor
or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``,
you must create ``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
......@@ -13567,13 +13567,15 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
import paddle
import six
# Creates a forward function, LodTensor can be input directly without
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# LodTensor must be actively converted to numpy array, otherwise,
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
......@@ -13598,7 +13600,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input LodTensor
# User-defined debug functions that print out the input Tensor
paddle.static.nn.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, act='softmax')
......@@ -13606,7 +13608,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
return paddle.mean(loss)
# example 2:
# This example shows how to turn LoDTensor into numpy array and
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
......@@ -13614,7 +13616,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
paddle.enable_static()
def element_wise_add(x, y):
# LodTensor must be actively converted to numpy array, otherwise,
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
......
......@@ -104,6 +104,7 @@ def create_parameter(shape,
.. code-block:: python
import paddle
paddle.enable_static()
W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
"""
check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
......@@ -161,6 +162,7 @@ def create_global_var(shape,
.. code-block:: python
import paddle
paddle.enable_static()
var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
persistable=True, force_cpu=True, name='new_var')
"""
......
......@@ -62,13 +62,13 @@ class ParamAttr(object):
.. code-block:: python
import paddle
paddle.enable_static()
w_param_attrs = paddle.ParamAttr(name="fc_weight",
learning_rate=0.5,
regularizer=paddle.regularizer.L2Decay(1.0),
trainable=True)
print(w_param_attrs.name) # "fc_weight"
paddle.enable_static()
x = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
y_predict = paddle.static.nn.fc(input=x, size=10, param_attr=w_param_attrs)
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册