Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
fa6c59a4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fa6c59a4
编写于
8月 26, 2021
作者:
B
Bo Liu
提交者:
GitHub
8月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Support npu kernel for StridedSlice op without grad (#34601)
上级
ac33c0ca
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
822 addition
and
0 deletion
+822
-0
paddle/fluid/operators/strided_slice_op_npu.cc
paddle/fluid/operators/strided_slice_op_npu.cc
+239
-0
python/paddle/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
...le/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
+583
-0
未找到文件。
paddle/fluid/operators/strided_slice_op_npu.cc
0 → 100755
浏览文件 @
fa6c59a4
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/strided_slice_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/slice_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
StridedSliceNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
PADDLE_ENFORCE_EQ
(
is_tensor_array
,
false
,
platform
::
errors
::
InvalidArgument
(
"Tensor array as input is not supported."
));
int
rank
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
StridedSliceCompute
<
1
>
(
ctx
);
break
;
case
2
:
StridedSliceCompute
<
2
>
(
ctx
);
break
;
case
3
:
StridedSliceCompute
<
3
>
(
ctx
);
break
;
case
4
:
StridedSliceCompute
<
4
>
(
ctx
);
break
;
case
5
:
StridedSliceCompute
<
5
>
(
ctx
);
break
;
case
6
:
StridedSliceCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input is supported up to 6."
));
break
;
}
}
private:
template
<
size_t
D
>
void
StridedSliceCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
place
=
ctx
.
GetPlace
();
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
in_dims
=
in
->
dims
();
// list<int>
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
strides_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
std
::
vector
<
int64_t
>
strides
(
strides_int
.
begin
(),
strides_int
.
end
());
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
// vector<Tensor<int32>>
auto
list_new_ends_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"EndsTensorList"
);
auto
list_new_starts_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"StartsTensorList"
);
auto
list_new_strides_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"StridesTensorList"
);
// Tensor<int32>
if
(
list_new_starts_tensor
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
list_new_starts_tensor
);
}
else
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
auto
*
starts_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"StartsTensor"
);
starts
=
GetDataFromTensor
<
int64_t
>
(
starts_tensor
);
}
if
(
list_new_ends_tensor
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
list_new_ends_tensor
);
}
else
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
auto
*
ends_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EndsTensor"
);
ends
=
GetDataFromTensor
<
int64_t
>
(
ends_tensor
);
}
if
(
list_new_strides_tensor
.
size
()
>
0
)
{
strides
=
GetDataFromTensorList
<
int64_t
>
(
list_new_strides_tensor
);
}
else
if
(
ctx
.
HasInput
(
"StridesTensor"
))
{
auto
*
strides_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"StridesTensor"
);
strides
=
GetDataFromTensor
<
int64_t
>
(
strides_tensor
);
}
// out dims calculation
std
::
vector
<
int64_t
>
out_dims_vector
(
in_dims
.
size
(),
-
1
);
StridedSliceOutDims
(
starts
,
ends
,
strides
,
axes
,
infer_flags
,
in_dims
,
decrease_axis
,
out_dims_vector
.
data
(),
axes
.
size
(),
false
);
framework
::
DDim
out_dims
(
framework
::
make_ddim
(
out_dims_vector
));
// check whether need to reverse (false: stride > 0; true: stride < 0)
std
::
vector
<
int
>
reverse_vector
(
starts
.
size
(),
0
);
StridedSliceFunctor
(
starts
.
data
(),
ends
.
data
(),
strides
.
data
(),
axes
.
data
(),
reverse_vector
.
data
(),
in_dims
,
infer_flags
,
decrease_axis
,
starts
.
size
());
// construct the starts_indices, ends_indices and strides_indices tensor for
// calling StridedSlice op
std
::
vector
<
int64_t
>
starts_indices_vector
(
D
,
0
);
std
::
vector
<
int64_t
>
ends_indices_vector
(
out_dims_vector
.
begin
(),
out_dims_vector
.
end
());
std
::
vector
<
int64_t
>
strides_indices_vector
(
D
,
1
);
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
int
axis_index
=
axes
[
axis
];
starts_indices_vector
[
axis_index
]
=
starts
[
axis
];
ends_indices_vector
[
axis_index
]
=
ends
[
axis
];
strides_indices_vector
[
axis_index
]
=
strides
[
axis
];
}
Tensor
starts_indices_tensor
;
Tensor
ends_indices_tensor
;
Tensor
strides_indices_tensor
;
starts_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
ends_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
strides_indices_tensor
.
mutable_data
<
int64_t
>
({
D
},
place
);
TensorFromVector
(
starts_indices_vector
,
ctx
.
device_context
(),
&
starts_indices_tensor
);
TensorFromVector
(
ends_indices_vector
,
ctx
.
device_context
(),
&
ends_indices_tensor
);
TensorFromVector
(
strides_indices_vector
,
ctx
.
device_context
(),
&
strides_indices_tensor
);
auto
out_dims_origin
=
out_dims
;
if
(
decrease_axis
.
size
()
>
0
)
{
std
::
vector
<
int64_t
>
new_out_shape
;
for
(
size_t
i
=
0
;
i
<
decrease_axis
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
out_dims
[
decrease_axis
[
i
]],
1
,
platform
::
errors
::
InvalidArgument
(
"the size of decrease dimension should be 1, but received %d."
,
out_dims
[
decrease_axis
[
i
]]));
out_dims_origin
[
decrease_axis
[
i
]]
=
0
;
}
for
(
int
i
=
0
;
i
<
out_dims_origin
.
size
();
++
i
)
{
if
(
out_dims_origin
[
i
]
!=
0
)
{
new_out_shape
.
push_back
(
out_dims_origin
[
i
]);
}
}
if
(
new_out_shape
.
size
()
==
0
)
{
new_out_shape
.
push_back
(
1
);
}
out_dims_origin
=
framework
::
make_ddim
(
new_out_shape
);
}
bool
need_reverse
=
false
;
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
if
(
reverse_vector
[
axis
]
==
1
)
{
need_reverse
=
true
;
break
;
}
}
out
->
Resize
(
out_dims
);
out
->
mutable_data
<
T
>
(
place
);
const
auto
&
runner
=
NpuOpRunner
(
"StridedSlice"
,
{
*
in
,
starts_indices_tensor
,
ends_indices_tensor
,
strides_indices_tensor
},
{
*
out
},
{{
"begin_mask"
,
0
},
{
"end_mask"
,
0
},
{
"ellipsis_mask"
,
0
},
{
"new_axis_mask"
,
0
},
{
"shrink_axis_mask"
,
0
}});
runner
.
Run
(
stream
);
if
(
need_reverse
)
{
Tensor
out_tmp
;
out_tmp
.
mutable_data
<
T
>
(
out_dims
,
place
);
TensorCopy
(
*
out
,
place
,
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
out_tmp
);
Tensor
reverse_axis
;
std
::
vector
<
int
>
reverse_axis_vector
;
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
if
(
reverse_vector
[
axis
]
==
1
)
{
reverse_axis_vector
.
push_back
(
axes
[
axis
]);
}
}
reverse_axis
.
mutable_data
<
int
>
(
{
static_cast
<
int
>
(
reverse_axis_vector
.
size
())},
place
);
TensorFromVector
(
reverse_axis_vector
,
ctx
.
device_context
(),
&
reverse_axis
);
const
auto
&
runner_reverse
=
NpuOpRunner
(
"ReverseV2"
,
{
out_tmp
,
reverse_axis
},
{
*
out
});
runner_reverse
.
Run
(
stream
);
}
if
(
decrease_axis
.
size
()
>
0
)
{
out
->
Resize
(
out_dims_origin
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
strided_slice
,
ops
::
StridedSliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
bool
>
,
ops
::
StridedSliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
StridedSliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
,
ops
::
StridedSliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
StridedSliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
);
python/paddle/fluid/tests/unittests/npu/test_strided_slice_op_npu.py
0 → 100755
浏览文件 @
fa6c59a4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
unittest
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
def
strided_slice_native_forward
(
input
,
axes
,
starts
,
ends
,
strides
):
dim
=
input
.
ndim
start
=
[]
end
=
[]
stride
=
[]
for
i
in
range
(
dim
):
start
.
append
(
0
)
end
.
append
(
input
.
shape
[
i
])
stride
.
append
(
1
)
for
i
in
range
(
len
(
axes
)):
start
[
axes
[
i
]]
=
starts
[
i
]
end
[
axes
[
i
]]
=
ends
[
i
]
stride
[
axes
[
i
]]
=
strides
[
i
]
result
=
{
1
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
]],
2
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
],
\
start
[
1
]:
end
[
1
]:
stride
[
1
]],
3
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
],
\
start
[
1
]:
end
[
1
]:
stride
[
1
],
start
[
2
]:
end
[
2
]:
stride
[
2
]],
4
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
],
\
start
[
1
]:
end
[
1
]:
stride
[
1
],
start
[
2
]:
end
[
2
]:
stride
[
2
],
start
[
3
]:
end
[
3
]:
stride
[
3
]],
5
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
],
\
start
[
1
]:
end
[
1
]:
stride
[
1
],
start
[
2
]:
end
[
2
]:
stride
[
2
],
start
[
3
]:
end
[
3
]:
stride
[
3
],
start
[
4
]:
end
[
4
]:
stride
[
4
]],
6
:
lambda
input
,
start
,
end
,
stride
:
input
[
start
[
0
]:
end
[
0
]:
stride
[
0
],
\
start
[
1
]:
end
[
1
]:
stride
[
1
],
start
[
2
]:
end
[
2
]:
stride
[
2
],
start
[
3
]:
end
[
3
]:
stride
[
3
],
\
start
[
4
]:
end
[
4
]:
stride
[
4
],
start
[
5
]:
end
[
5
]:
stride
[
5
]]
}[
dim
](
input
,
start
,
end
,
stride
)
return
result
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'strided_slice'
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
)
self
.
axes
=
[
0
]
self
.
starts
=
[
2
]
self
.
ends
=
[
7
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp1
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp2
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
)
self
.
axes
=
[
0
]
self
.
starts
=
[
5
]
self
.
ends
=
[
0
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp3
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
)
self
.
axes
=
[
0
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
3
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp4
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStridedSliceOp5
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
1
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStridedSliceOp6
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
3
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStridedSliceOp7
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStridedSliceOp8
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
)
self
.
axes
=
[
1
]
self
.
starts
=
[
1
]
self
.
ends
=
[
2
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp9
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
)
self
.
axes
=
[
1
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
2
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOp10
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStridedSliceOp11
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStridedSliceOp12
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStridedSliceOp13
(
TestStridedSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
class
TestStridedSliceOpBool
(
TestStridedSliceOp
):
def
test_check_grad
(
self
):
pass
class
TestStridedSliceOpBool1D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
"bool"
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStridedSliceOpBool2D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStridedSliceOpBool3D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStridedSliceOpBool4D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStridedSliceOpBool5D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStridedSliceOpBool6D
(
TestStridedSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
starts_infer
=
[
1
,
10
,
2
]
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends_infer
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
ends_infer
=
[
3
,
1
,
4
]
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_starts_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_ends_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_listTensor_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
op_type
=
"strided_slice"
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensorList"
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
skip_check_grad_ci
(
reason
=
'''forward only, it doesn't need to call check_grad.'''
)
class
TestStridedSliceOp_strides_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StridesTensor"
:
np
.
array
(
self
.
strides
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
#'strides': self.strides,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
-
1
,
2
]
self
.
ends
=
[
2
,
0
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
place
=
paddle
.
NPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# Test python API
class
TestStridedSliceAPI
(
unittest
.
TestCase
):
def
test_1
(
self
):
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
minus_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
1
)
minus_3
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
3
)
starts
=
fluid
.
layers
.
data
(
name
=
'starts'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
ends
=
fluid
.
layers
.
data
(
name
=
'ends'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
strides
=
fluid
.
layers
.
data
(
name
=
'strides'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
dtype
=
"float64"
)
out_1
=
fluid
.
layers
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_2
=
fluid
.
layers
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_3
=
fluid
.
layers
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
],
strides
=
[
1
,
1
,
1
])
out_4
=
fluid
.
layers
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
,
strides
=
strides
)
out_5
=
x
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
:
1
,
0
:
100
:
2
,
:,
minus_1
:
2
:
minus_1
]
out_7
=
x
[
minus_1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
]
exe
=
fluid
.
Executor
(
place
=
paddle
.
NPUPlace
(
0
))
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
input
,
'starts'
:
np
.
array
([
-
3
,
0
,
2
]).
astype
(
"int32"
),
'ends'
:
np
.
array
([
3
,
2147483648
,
-
1
]).
astype
(
"int64"
),
'strides'
:
np
.
array
([
1
,
1
,
1
]).
astype
(
"int32"
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
])
assert
np
.
array_equal
(
res_1
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_2
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_3
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_4
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_5
,
input
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_6
,
input
[
-
3
:
3
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
assert
np
.
array_equal
(
res_7
,
input
[
-
1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
def
test_dygraph_op
(
self
):
x
=
paddle
.
zeros
(
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"float32"
)
axes
=
[
1
,
2
,
3
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
strides_1
=
[
1
,
1
,
1
]
sliced_1
=
paddle
.
strided_slice
(
x
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
,
strides
=
strides_1
)
assert
sliced_1
.
shape
==
(
3
,
2
,
2
,
2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录