提交 f89a9c5d 编写于 作者: L luotao1

Merge branch 'develop' into has_attr

...@@ -53,6 +53,10 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, ...@@ -53,6 +53,10 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p)); this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
} }
} }
// TODO(gongwb) :polish them!
if (is_encoded) {
VLOG(1) << "Use dgc allreduce mode";
}
} }
#else #else
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
...@@ -86,7 +90,7 @@ void AllReduceOpHandle::RunImplEncoded() { ...@@ -86,7 +90,7 @@ void AllReduceOpHandle::RunImplEncoded() {
paddle::framework::GradOriginalVarName(in_var_handles[i]->name()); paddle::framework::GradOriginalVarName(in_var_handles[i]->name());
auto encode_var_name = original_name + g_dgc_encoded; auto encode_var_name = original_name + g_dgc_encoded;
auto *in_var = local_scope->FindVar(encode_var_name); auto *in_var = local_scope->FindVar(encode_var_name);
PADDLE_ENFORCE_NOT_NULL(in_var); PADDLE_ENFORCE_NOT_NULL(in_var, "%s should not be null", encode_var_name);
auto &in = in_var->Get<LoDTensor>(); auto &in = in_var->Get<LoDTensor>();
ins.emplace_back(&in); ins.emplace_back(&in);
......
...@@ -142,6 +142,14 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -142,6 +142,14 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
AppendPass("memory_optimize_pass"); AppendPass("memory_optimize_pass");
} }
// runtime_context_cache pass should be the last pass to enable the attr of
// all original and fused operators. But no operators can be enabled this
// attr if putting it after MultiDevPass.
if (strategy_.cache_runtime_context_) {
VLOG(10) << "Add runtime_context_cache_pass";
AppendPass("runtime_context_cache_pass");
}
AppendMultiDevPass(strategy_); AppendMultiDevPass(strategy_);
if (strategy_.fuse_all_reduce_ops_) { if (strategy_.fuse_all_reduce_ops_) {
...@@ -243,7 +251,7 @@ ir::Graph *BuildStrategy::Apply(ir::Graph *graph, ...@@ -243,7 +251,7 @@ ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
CreatePassesFromStrategy(false); CreatePassesFromStrategy(false);
for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) { for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
VLOG(3) << "apply " << pass->Type(); VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
if (IsMultiDevPass(pass->Type())) { if (IsMultiDevPass(pass->Type())) {
pass->Erase(kPlaces); pass->Erase(kPlaces);
pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places); pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
...@@ -328,3 +336,4 @@ USE_PASS(graph_to_program_pass); ...@@ -328,3 +336,4 @@ USE_PASS(graph_to_program_pass);
USE_PASS(fuse_adam_op_pass); USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass); USE_PASS(fuse_sgd_op_pass);
USE_PASS(fuse_all_reduce_op_pass); USE_PASS(fuse_all_reduce_op_pass);
USE_PASS(runtime_context_cache_pass);
...@@ -107,6 +107,8 @@ struct BuildStrategy { ...@@ -107,6 +107,8 @@ struct BuildStrategy {
std::vector<std::string> trainers_endpoints_; std::vector<std::string> trainers_endpoints_;
bool remove_unnecessary_lock_{true}; bool remove_unnecessary_lock_{true};
bool cache_runtime_context_{false};
// NOTE: // NOTE:
// Before you add new options, think if it's a general strategy that works // Before you add new options, think if it's a general strategy that works
// with other strategy. If not, the strategy should be created through // with other strategy. If not, the strategy should be created through
......
...@@ -68,6 +68,7 @@ pass_library(transpose_flatten_concat_fuse_pass inference) ...@@ -68,6 +68,7 @@ pass_library(transpose_flatten_concat_fuse_pass inference)
pass_library(identity_scale_op_clean_pass base) pass_library(identity_scale_op_clean_pass base)
pass_library(sync_batch_norm_pass base) pass_library(sync_batch_norm_pass base)
pass_library(runtime_context_cache_pass base) pass_library(runtime_context_cache_pass base)
pass_library(expected_kernel_cache_pass base)
pass_library(quant_conv2d_dequant_fuse_pass inference) pass_library(quant_conv2d_dequant_fuse_pass inference)
pass_library(fillconstant_elementwisemul_fuse inference) pass_library(fillconstant_elementwisemul_fuse inference)
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/expected_kernel_cache_pass.h"
#include <memory>
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace framework {
namespace ir {
void ExpectedKernelCachePass::ApplyImpl(ir::Graph* graph) const {
VLOG(3) << "Applies Expected Kernel Cache strategy.";
for (const Node* n : graph->Nodes()) {
if (n->IsOp()) {
n->Op()->SetAttr(kEnableCacheExpectedKernel, true);
}
}
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(expected_kernel_cache_pass,
paddle::framework::ir::ExpectedKernelCachePass);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class ExpectedKernelCachePass : public Pass {
protected:
void ApplyImpl(ir::Graph* graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -23,7 +23,7 @@ namespace ir { ...@@ -23,7 +23,7 @@ namespace ir {
void RuntimeContextCachePass::ApplyImpl(ir::Graph* graph) const { void RuntimeContextCachePass::ApplyImpl(ir::Graph* graph) const {
VLOG(3) << "Applies Runtime Context Cache strategy."; VLOG(3) << "Applies Runtime Context Cache strategy.";
for (const Node* n : graph->Nodes()) { for (const Node* n : graph->Nodes()) {
if (n->IsOp()) { if (n->IsOp() && n->Op()) {
n->Op()->SetAttr(kEnableCacheRuntimeContext, true); n->Op()->SetAttr(kEnableCacheRuntimeContext, true);
} }
} }
......
...@@ -906,50 +906,23 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -906,50 +906,23 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place); auto* dev_ctx = pool.Get(place);
// check if op[type] has kernel registered. if (!HasAttr(kEnableCacheExpectedKernel) || !kernel_type_) {
auto& all_op_kernels = AllOpKernels(); ChooseKernel(*runtime_ctx, scope, place);
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.", type_);
} }
OpKernelMap& kernels = kernels_iter->second; std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
auto expected_kernel_key = this->GetExpectedKernelType(
ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx, nullptr));
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if (kernel_iter == kernels.end() &&
expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
expected_kernel_key.library_type_ = LibraryType::kPlain;
expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
kernel_iter = kernels.find(expected_kernel_key);
}
#endif
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", type_,
KernelTypeToString(expected_kernel_key));
}
std::vector<KernelConfig>* kernel_configs =
GetKernelConfig(expected_kernel_key);
// do data transformScope &transfer_scope; // do data transformScope &transfer_scope;
std::vector<std::string> transfered_inplace_vars; std::vector<std::string> transfered_inplace_vars;
auto* transfer_scope = PrepareData(scope, expected_kernel_key, auto* transfer_scope =
&transfered_inplace_vars, runtime_ctx); PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
// exec scope is the scope that kernel actually executed on. // exec scope is the scope that kernel actually executed on.
const Scope& exec_scope = const Scope& exec_scope =
(transfer_scope == nullptr ? scope : *transfer_scope); (transfer_scope == nullptr ? scope : *transfer_scope);
if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) { if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
dev_ctx = pool.Get(expected_kernel_key.place_); dev_ctx = pool.Get(kernel_type_->place_);
} }
if (!all_kernels_must_compute_runtime_shape) { if (!all_kernels_must_compute_runtime_shape) {
...@@ -958,8 +931,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -958,8 +931,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
} }
// TODO(panyx0718): ExecutionContext should only depend on RuntimeContext // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
// not Scope. Imperative mode only pass inputs and get outputs. // not Scope. Imperative mode only pass inputs and get outputs.
kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
*runtime_ctx, kernel_configs)); kernel_configs));
if (!transfered_inplace_vars.empty()) { if (!transfered_inplace_vars.empty()) {
// there is inplace variable has been transfered. // there is inplace variable has been transfered.
...@@ -985,6 +958,46 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -985,6 +958,46 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
} }
} }
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
const Scope& scope,
const platform::Place& place) const {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
// check if op[type] has kernel registered.
auto& all_op_kernels = AllOpKernels();
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.", type_);
}
OpKernelMap& kernels = kernels_iter->second;
auto expected_kernel_key = this->GetExpectedKernelType(
ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if (kernel_iter == kernels.end() &&
expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
expected_kernel_key.library_type_ = LibraryType::kPlain;
expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
kernel_iter = kernels.find(expected_kernel_key);
}
#endif
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", type_,
KernelTypeToString(expected_kernel_key));
}
kernel_type_.reset(new OpKernelType(expected_kernel_key));
kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
}
void OperatorWithKernel::TransferInplaceVarsBack( void OperatorWithKernel::TransferInplaceVarsBack(
const Scope& scope, const std::vector<std::string>& inplace_vars, const Scope& scope, const std::vector<std::string>& inplace_vars,
const Scope& transfer_scope) const { const Scope& transfer_scope) const {
......
...@@ -70,6 +70,12 @@ constexpr char kNewGradSuffix[] = "@NEWGRAD@"; ...@@ -70,6 +70,12 @@ constexpr char kNewGradSuffix[] = "@NEWGRAD@";
/// this Op's execution to save the elapsed time. /// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@"; constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";
/// If an Op has attribtue kEnableCacheExpectedKernel, it means that in a same
/// name scope and same place, since the expected kerenl of this Op does not
/// change in the execution, it could be recorded only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheExpectedKernel[] = "@ENABLE_CACHE_EXPECTED_KERNEL@";
/// If an Op has this attribute, all its kernels should calculate output /// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And /// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape() /// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
...@@ -491,8 +497,13 @@ class OperatorWithKernel : public OperatorBase { ...@@ -491,8 +497,13 @@ class OperatorWithKernel : public OperatorBase {
const std::vector<std::string>& inplace_vars, const std::vector<std::string>& inplace_vars,
const Scope& exec_scope) const; const Scope& exec_scope) const;
void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
const platform::Place& place) const;
protected: protected:
mutable OpKernelConfigsMap kernel_configs_map_; mutable OpKernelConfigsMap kernel_configs_map_;
mutable std::unique_ptr<OpKernelType> kernel_type_;
mutable std::unique_ptr<OpKernelFunc> kernel_func_;
mutable std::unique_ptr<RuntimeContext> runtime_ctx_; mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
mutable const Scope* pre_scope_ = nullptr; mutable const Scope* pre_scope_ = nullptr;
mutable bool enable_cache_runtime_context = false; mutable bool enable_cache_runtime_context = false;
......
...@@ -33,8 +33,7 @@ void NCCLParallelContext::RecvNCCLID(const std::string &ep, ...@@ -33,8 +33,7 @@ void NCCLParallelContext::RecvNCCLID(const std::string &ep,
// creating socket fd // creating socket fd
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)
PADDLE_THROW("create server fd failed"); PADDLE_THROW("create server fd failed");
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)))
sizeof(opt)))
PADDLE_THROW("set socket opt failed"); PADDLE_THROW("set socket opt failed");
address.sin_family = AF_INET; address.sin_family = AF_INET;
......
...@@ -231,6 +231,7 @@ void AnalysisConfig::Update() { ...@@ -231,6 +231,7 @@ void AnalysisConfig::Update() {
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass"); pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
} }
pass_builder()->DeletePass("runtime_context_cache_pass"); pass_builder()->DeletePass("runtime_context_cache_pass");
pass_builder()->DeletePass("expected_kernel_cache_pass");
} }
if (use_mkldnn_) { if (use_mkldnn_) {
......
...@@ -99,6 +99,7 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { ...@@ -99,6 +99,7 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
"conv_elementwise_add_fuse_pass", // "conv_elementwise_add_fuse_pass", //
#endif // #endif //
"transpose_flatten_concat_fuse_pass", "transpose_flatten_concat_fuse_pass",
"expected_kernel_cache_pass", //
}); });
use_gpu_ = true; use_gpu_ = true;
...@@ -136,6 +137,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) { ...@@ -136,6 +137,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
"conv_bn_fuse_pass", // "conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", // "is_test_pass", //
"expected_kernel_cache_pass", //
}); });
use_gpu_ = false; use_gpu_ = false;
......
...@@ -1356,6 +1356,10 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -1356,6 +1356,10 @@ All parameter, weight, gradient are variables in Paddle.
"fuse_all_reduce_ops", "fuse_all_reduce_ops",
[](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; }, [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
[](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; }) [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
.def_property(
"cache_runtime_context",
[](const BuildStrategy &self) { return self.cache_runtime_context_; },
[](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
.def("_finalize_strategy_and_create_passes", .def("_finalize_strategy_and_create_passes",
[](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> { [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
return self.CreatePassesFromStrategy(true); return self.CreatePassesFromStrategy(true);
......
...@@ -752,7 +752,7 @@ class DGCMomentumOptimizer(MomentumOptimizer): ...@@ -752,7 +752,7 @@ class DGCMomentumOptimizer(MomentumOptimizer):
force_cpu=True) force_cpu=True)
for param_var, grad_var in param_and_grads: for param_var, grad_var in param_and_grads:
var_numel = reduce(lambda x, y: x * y, param_var.shape) var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
if var_numel < 16384 or \ if var_numel < 16384 or \
param_var.type == core.VarDesc.VarType.SELECTED_ROWS or \ param_var.type == core.VarDesc.VarType.SELECTED_ROWS or \
grad_var.type == core.VarDesc.VarType.SELECTED_ROWS or \ grad_var.type == core.VarDesc.VarType.SELECTED_ROWS or \
......
...@@ -104,6 +104,7 @@ class ParallelExecutor(object): ...@@ -104,6 +104,7 @@ class ParallelExecutor(object):
self._scope = scope if scope is not None else executor.global_scope() self._scope = scope if scope is not None else executor.global_scope()
if main_program is not None and main_program._enable_dgc: if main_program is not None and main_program._enable_dgc:
assert num_trainers > 1
assert build_strategy.reduce_strategy == BuildStrategy.ReduceStrategy.AllReduce assert build_strategy.reduce_strategy == BuildStrategy.ReduceStrategy.AllReduce
assert num_trainers * len( assert num_trainers * len(
self._places) > 1, "dgc is not useful for single card training" self._places) > 1, "dgc is not useful for single card training"
...@@ -123,6 +124,11 @@ class ParallelExecutor(object): ...@@ -123,6 +124,11 @@ class ParallelExecutor(object):
exec_strategy=exec_strategy, exec_strategy=exec_strategy,
share_vars_from=share_vars_from._compiled_program share_vars_from=share_vars_from._compiled_program
if share_vars_from else None) if share_vars_from else None)
# FIXME(gongwb): I will move dgc from dist mode to allreduce mode in next pr.
if main_program._enable_dgc:
self._compiled_program._build_strategy.is_distribution = True
self._place = core.CUDAPlace(0) if use_cuda else core.CPUPlace() self._place = core.CUDAPlace(0) if use_cuda else core.CPUPlace()
self._exe = executor.Executor(self._place) self._exe = executor.Executor(self._place)
self._compiled_program._compile(place=self._place, scope=self._scope) self._compiled_program._compile(place=self._place, scope=self._scope)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册