未验证 提交 f88065d3 编写于 作者: B baoachun 提交者: GitHub

add mkldnn conv_elementwise_add_mkldnn_fuse_pass ut (#37612)

* add mkldnn conv_elementwise_add_mkldnn_fuse_pass ut

* update mkldnn conv_elementwise_add_mkldnn_fuse_pass ut

* update conv_elementwise_add_mkldnn_fuse_pass ut

* update conv_elementwise_add_mkldnn_fuse_pass ut

* update conv_elementwise_add_mkldnn_fuse_pass ut

* restrict conv2d data_format in conv_elementwise_add_mkldnn_fuse_pass

* update conv_elementwise_add_mkldnn_fuse_pass OpCompat

* update conv_elementwise_add_mkldnn_fuse_pass ut

* update ut
上级 4aed099d
...@@ -117,7 +117,7 @@ ResidualConnectionMKLDNNFusePass::ResidualConnectionMKLDNNFusePass() { ...@@ -117,7 +117,7 @@ ResidualConnectionMKLDNNFusePass::ResidualConnectionMKLDNNFusePass() {
.IsType<std::vector<int>>() .IsType<std::vector<int>>()
.End() .End()
.AddAttr("data_format") .AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW", "AnyLayout"})
.End(); .End();
AddOpCompat(OpCompat("elementwise_add")) AddOpCompat(OpCompat("elementwise_add"))
...@@ -131,7 +131,7 @@ ResidualConnectionMKLDNNFusePass::ResidualConnectionMKLDNNFusePass() { ...@@ -131,7 +131,7 @@ ResidualConnectionMKLDNNFusePass::ResidualConnectionMKLDNNFusePass() {
.IsTensor() .IsTensor()
.End() .End()
.AddAttr("axis") .AddAttr("axis")
.IsIntIn({-1, 0}) .IsIntIn({-1, 0, 1})
.End(); .End();
} }
......
...@@ -91,6 +91,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU) ...@@ -91,6 +91,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
endif() endif()
if (WITH_MKLDNN) if (WITH_MKLDNN)
set_tests_properties(test_mkldnn_conv_elementwise_add_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120) set_tests_properties(test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_mkldnn_reshape_transpose_matmul_fuse_pass PROPERTIES TIMEOUT 100) set_tests_properties(test_mkldnn_reshape_transpose_matmul_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_prelu_op PROPERTIES TIMEOUT 300) set_tests_properties(test_mkldnn_prelu_op PROPERTIES TIMEOUT 300)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestConvElementwiseAddMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# If the problem has been fixed, the judgment
# needs to be deleted!!!
if attrs[1]['data_format'] == "NHWC":
return False
return True
def sample_program_config(self, draw):
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
dilations = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.sampled_from([1, 2, 4]))
paddings = draw(st.sampled_from([[0, 3], [1, 1], [1, 2, 3, 4]]))
strides = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
axis = draw(st.sampled_from([-1, 0, 1]))
batch_size = draw(st.integers(min_value=1, max_value=4))
def generate_input1():
if data_format == "NCHW":
return np.random.random(
[batch_size, 48, 64, 64]).astype(np.float32)
else:
return np.random.random(
[batch_size, 64, 64, 48]).astype(np.float32)
def generate_weight1():
return np.random.random(
[48, int(48 / groups), 3, 3]).astype(np.float32)
def compute_out_shape(padding_alg):
import paddle
import paddle.nn as nn
x_var = paddle.uniform(
(batch_size, 48, 64, 64), dtype='float32', min=-1., max=1.)
if padding_alg == "EXPLICIT":
conv = nn.Conv2D(48, 48, (3, 3), strides, paddings, dilations,
1)
else:
conv = nn.Conv2D(48, 48, (3, 3), strides, padding_alg,
dilations, 1)
y_var = conv(x_var)
return y_var.shape
def generate_weight2():
return np.random.random([48]).astype(np.float32)
if compute_out_shape(padding_algorithm) != (batch_size, 48, 64, 64):
axis = 1
relu_op = OpConfig(
type="relu",
inputs={"X": ["input_data1"]},
outputs={"Out": ["sigmoid_out"]},
attrs={})
conv2d_op = OpConfig(
type="conv2d",
inputs={"Input": ["sigmoid_out"],
"Filter": ["conv_weight"]},
outputs={"Output": ["conv_output"]},
attrs={
"data_format": data_format,
"dilations": dilations,
"padding_algorithm": padding_algorithm,
"groups": groups,
"paddings": paddings,
"strides": strides
})
if axis == -1 or axis == 0:
elt_op = OpConfig(
type="elementwise_add",
inputs={"X": ["input_data1"],
"Y": ["conv_output"]},
outputs={"Out": ["elementwise_output"]},
attrs={'axis': axis})
else:
elt_op = OpConfig(
type="elementwise_add",
inputs={"X": ["conv_output"],
"Y": ["elementwise_weight"]},
outputs={"Out": ["elementwise_output"]},
attrs={'axis': axis})
model_net = [relu_op, conv2d_op, elt_op]
if axis == 1:
program_config = ProgramConfig(
ops=model_net,
weights={
"conv_weight":
TensorConfig(data_gen=partial(generate_weight1)),
"elementwise_weight":
TensorConfig(data_gen=partial(generate_weight2))
},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input1))
},
outputs=["elementwise_output"])
else:
program_config = ProgramConfig(
ops=model_net,
weights={
"conv_weight":
TensorConfig(data_gen=partial(generate_weight1))
},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input1))
},
outputs=["elementwise_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["relu", "conv2d"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False, passes=["conv_elementwise_add_mkldnn_fuse_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册