未验证 提交 f6d8ab54 编写于 作者: Z zhangchunle 提交者: GitHub

fix iscan bug in test file (#34912)

上级 3b9f040d
...@@ -35,7 +35,7 @@ from paddle.nn import Linear, Conv2D, Softmax, BatchNorm2D, MaxPool2D ...@@ -35,7 +35,7 @@ from paddle.nn import Linear, Conv2D, Softmax, BatchNorm2D, MaxPool2D
from paddle.fluid.log_helper import get_logger from paddle.fluid.log_helper import get_logger
from paddle.fluid.dygraph import nn from paddle.fluid.dygraph import nn
from imperative_test_utils import fix_model_dict, train_lenet, ImperativeLenet from imperative_test_utils import fix_model_dict, train_lenet
paddle.enable_static() paddle.enable_static()
......
...@@ -26,15 +26,6 @@ from paddle.distributed.fleet.base.role_maker import RoleMakerBase ...@@ -26,15 +26,6 @@ from paddle.distributed.fleet.base.role_maker import RoleMakerBase
from paddle.fluid.contrib.mixed_precision.decorator import OptimizerWithMixedPrecision from paddle.fluid.contrib.mixed_precision.decorator import OptimizerWithMixedPrecision
from . import mode from . import mode
class Mode:
"""
There are various mode for fleet, each of them is designed for different model.
"""
PS = 1
COLLECTIVE = 2
__all__ = ['Fleet', 'DistributedOptimizer'] __all__ = ['Fleet', 'DistributedOptimizer']
__all__ += mode.__all__ __all__ += mode.__all__
......
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from test_dist_base import TestDistRunnerBase, runtime_main from test_dist_base import TestDistRunnerBase
from dist_mnist import cnn_model from dist_mnist import cnn_model
# from paddle.fluid.incubate.fleet.collective import fleet # from paddle.fluid.incubate.fleet.collective import fleet
import paddle.distributed.fleet as fleet import paddle.distributed.fleet as fleet
......
...@@ -85,7 +85,7 @@ class TestReshape2OneDNNOpDimInfer2(TestReshape2OneDNNOp): ...@@ -85,7 +85,7 @@ class TestReshape2OneDNNOpDimInfer2(TestReshape2OneDNNOp):
'XShape': np.random.random(self.ori_shape).astype("float32") 'XShape': np.random.random(self.ori_shape).astype("float32")
} }
def init_data(self): def init_data1(self):
self.ori_shape = (6, 20) self.ori_shape = (6, 20)
self.new_shape = (0, -1, 20) self.new_shape = (0, -1, 20)
self.actual_shape = (2, 3, 20) self.actual_shape = (2, 3, 20)
......
...@@ -46,7 +46,7 @@ class TestDistGeoClipByGlobalNorm(TestFleetBase): ...@@ -46,7 +46,7 @@ class TestDistGeoClipByGlobalNorm(TestFleetBase):
self.check_with_place( self.check_with_place(
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True) "dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
def _setup_config(self): def _setup_config1(self):
self._sync_mode = False self._sync_mode = False
self._grad_clip_mode = 2 self._grad_clip_mode = 2
......
...@@ -21,7 +21,7 @@ import paddle.fluid as fluid ...@@ -21,7 +21,7 @@ import paddle.fluid as fluid
paddle.enable_static() paddle.enable_static()
class TestFleetBase(unittest.TestCase): class TestFleetBase_1(unittest.TestCase):
def setUp(self): def setUp(self):
os.environ["POD_IP"] = "127.0.0.1" os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
......
...@@ -268,264 +268,6 @@ class TestGlooWithCloudRoleMaker(unittest.TestCase): ...@@ -268,264 +268,6 @@ class TestGlooWithCloudRoleMaker(unittest.TestCase):
self.case(role, "server") self.case(role, "server")
self.clean(tmp) self.clean(tmp)
def test_fs_gloo4(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
os.environ["TRAINING_ROLE"] = "WORKER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "3"
os.environ["PADDLE_GLOO_HTTP_ENDPOINT"] = "127.0.0.1:30019"
role = role_maker.PaddleCloudRoleMaker(is_collecitve=True)
role._generate_role()
import time
time.sleep(3)
def test_fs_gloo5(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINERS_NUM"] = "0"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "2"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "2"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "server")
self.case(role, "all")
self.clean(tmp)
def test_fs_gloo6(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINERS_NUM"] = "0"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "2"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "1"
os.environ["PADDLE_GLOO_FS_NAME"] = "NULL"
os.environ["PADDLE_GLOO_FS_UGI"] = "NULL"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "server")
self.case(role, "all")
self.clean(tmp)
def test_fs_gloo7(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINERS_NUM"] = "0"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "5"
role = role_maker.PaddleCloudRoleMaker()
self.assertRaises(ValueError, role._generate_role)
def test_fs_gloo8(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINERS_NUM"] = "0"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "2"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "1"
os.environ["PADDLE_GLOO_FS_NAME"] = "NULL"
os.environ["PADDLE_GLOO_FS_UGI"] = "NULL"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
def net():
x = paddle.fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = paddle.fluid.layers.fc(input=x, size=1, act=None)
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost(
input=y_predict, label=y)
avg_cost = paddle.fluid.layers.mean(cost)
return avg_cost
from paddle.distributed import fleet
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
avg_cost = net()
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = False
optimizer = paddle.optimizer.SGD(0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
comm_world = "server"
fleet.util.barrier(comm_world)
gather = fleet.util.all_gather(1, comm_world)
self.assertEqual(gather[0], 1)
all_reduce = fleet.util.all_reduce(1, "sum", comm_world)
self.assertEqual(1, all_reduce)
self.clean(tmp)
class TestGlooWithCloudRoleMaker(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_TRAINERS_NUM"] = "1"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_TRAINER_ID"] = "0"
def case(self, role, comm_world):
role._barrier(comm_world)
gather = role._all_gather(1, comm_world)
self.assertEqual(gather[0], 1)
all_reduce = role._all_reduce(1, "sum", comm_world)
self.assertEqual(1, all_reduce)
def mkdir(self):
tmp = tempfile.mkdtemp()
return tmp
def clean(self, tmp):
shutil.rmtree(tmp)
def test_hdfs_gloo(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "1"
os.environ["PADDLE_GLOO_FS_NAME"] = "NULL"
os.environ["PADDLE_GLOO_FS_UGI"] = "NULL"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "worker")
self.clean(tmp)
def test_fs_gloo(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "2"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "worker")
self.clean(tmp)
def test_fs_gloo2(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "2"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "server")
self.clean(tmp)
def test_fs_gloo3(self):
plats = platform.platform()
if 'Linux' not in plats:
print("skip gloo UT on MacOS/Win")
return
tmp = self.mkdir()
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["SYS_JOB_ID"] = "gloo_for_cluster"
os.environ["PADDLE_WITH_GLOO"] = "1"
os.environ["PADDLE_GLOO_RENDEZVOUS"] = "1"
os.environ["PADDLE_GLOO_FS_NAME"] = "NULL"
os.environ["PADDLE_GLOO_FS_UGI"] = "NULL"
os.environ["PADDLE_GLOO_FS_PATH"] = tmp
role = role_maker.PaddleCloudRoleMaker()
role._generate_role()
self.case(role, "server")
self.clean(tmp)
def test_fs_gloo4(self): def test_fs_gloo4(self):
plats = platform.platform() plats = platform.platform()
if 'Linux' not in plats: if 'Linux' not in plats:
......
...@@ -1658,20 +1658,20 @@ class TestLayer(LayerTest): ...@@ -1658,20 +1658,20 @@ class TestLayer(LayerTest):
i = layers.fill_constant(shape=[1], dtype='int64', value=0) i = layers.fill_constant(shape=[1], dtype='int64', value=0)
ten = layers.fill_constant(shape=[1], dtype='int64', value=10) ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
def cond(i): def cond1(i):
return layers.less_than(i, ten) return layers.less_than(i, ten)
def body(i): def body1(i):
return i + 1 return i + 1
dy_ret = layers.while_loop(cond, body, [i]) dy_ret = layers.while_loop(cond1, body1, [i])
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
j = layers.fill_constant(shape=[1], dtype='int64', value=0) j = layers.fill_constant(shape=[1], dtype='int64', value=0)
def body2(i): def body2(i):
return i + 1, i + 2 return i + 1, i + 2
layers.while_loop(cond, body2, [j]) layers.while_loop(cond1, body2, [j])
self.assertTrue(np.array_equal(static_ret[0], dy_ret[0].numpy())) self.assertTrue(np.array_equal(static_ret[0], dy_ret[0].numpy()))
......
...@@ -207,8 +207,8 @@ for dim_X in (1, 2, 3): ...@@ -207,8 +207,8 @@ for dim_X in (1, 2, 3):
# Test case more batch_size and N, M, K # Test case more batch_size and N, M, K
def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y, def generate_compatible_shapes_batch(dim_X, dim_Y, transpose_X, transpose_Y,
batch_size): batch_size):
BATCH_SIZE = 2 BATCH_SIZE = 2
M = 3 M = 3
N = 4 N = 4
...@@ -243,7 +243,7 @@ def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y, ...@@ -243,7 +243,7 @@ def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y,
# Test case n-dim # Test case n-dim
def generate_compatible_shapes(dim, transpose_X, transpose_Y): def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
M = 2 M = 2
N = 4 N = 4
K = 3 K = 3
...@@ -270,8 +270,8 @@ for dim in [4]: ...@@ -270,8 +270,8 @@ for dim in [4]:
test_name = ( test_name = (
'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format( 'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
dim, dim, transpose_X, transpose_Y)) dim, dim, transpose_X, transpose_Y))
shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X, shape_X, shape_Y = generate_compatible_shapes_ndim(dim, transpose_X,
transpose_Y) transpose_Y)
globals()[test_name] = type(test_name, (Generator, OpTest), { globals()[test_name] = type(test_name, (Generator, OpTest), {
'shape_X': shape_X, 'shape_X': shape_X,
'shape_Y': shape_Y, 'shape_Y': shape_Y,
......
...@@ -36,10 +36,10 @@ class TestHybridPipeParallel(TestMultipleGpus): ...@@ -36,10 +36,10 @@ class TestHybridPipeParallel(TestMultipleGpus):
def test_hybrid_parallel_transformer(self): def test_hybrid_parallel_transformer(self):
self.run_mnist_2gpu('hybrid_parallel_pp_transformer.py') self.run_mnist_2gpu('hybrid_parallel_pp_transformer.py')
def test_hybrid_parallel_transformer(self): def test_hybrid_parallel_save_load(self):
self.run_mnist_2gpu('hybrid_parallel_pp_save_load.py') self.run_mnist_2gpu('hybrid_parallel_pp_save_load.py')
def test_hybrid_parallel_transformer(self): def test_hybrid_parallel_recompute(self):
self.run_mnist_2gpu('hybrid_parallel_pp_recompute.py') self.run_mnist_2gpu('hybrid_parallel_pp_recompute.py')
......
...@@ -561,24 +561,6 @@ class TestKeepDim8DReduce(Test1DReduce): ...@@ -561,24 +561,6 @@ class TestKeepDim8DReduce(Test1DReduce):
} }
class TestReduceAll(Test1DReduce):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].sum()}
class TestReduceAll(Test1DReduce):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
}
self.attrs = {'reduce_all': True, 'dim': (3, 4, 5)}
self.outputs = {'Out': self.inputs['X'].sum(axis=self.attrs['dim'])}
@skip_check_grad_ci( @skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function," reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.") " its gradient check is not supported by unittest framework.")
......
...@@ -49,9 +49,6 @@ class TestSumOp(OpTest): ...@@ -49,9 +49,6 @@ class TestSumOp(OpTest):
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['x0'], 'Out') self.check_grad(['x0'], 'Out')
def init_kernel_type(self):
pass
class TestSelectedRowsSumOp(unittest.TestCase): class TestSelectedRowsSumOp(unittest.TestCase):
def setUp(self): def setUp(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册