提交 f4729a24 编写于 作者: L Luo Tao

Merge branch 'develop' into image

...@@ -13,7 +13,7 @@ define_py_data_sources2( ...@@ -13,7 +13,7 @@ define_py_data_sources2(
settings( settings(
batch_size=batch_size, batch_size=batch_size,
learning_rate=0.01 / batch_size, learning_rate=0.001 / batch_size,
learning_method=MomentumOptimizer(0.9), learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size)) regularization=L2Regularization(0.0005 * batch_size))
......
...@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline, ...@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
if (biases_) { resetFwdBuffers(inVals_, bias, out);
LOG(FATAL) << "not implemented yet";
}
resetFwdBuffers(inVals_, out);
in = inVals_[0]; in = inVals_[0];
std::shared_ptr<sum::primitive_desc> fwdPD; std::shared_ptr<sum::primitive_desc> fwdPD;
resetFwdPD(fwdPD, inVals_, out); std::shared_ptr<sum::primitive_desc> biasPD;
resetFwdPD(fwdPD, biasPD, inVals_, bias, out);
resetFwdPipeline(pipeline, fwdPD, inVals_, out); resetFwdPipeline(pipeline, fwdPD, biasPD, inVals_, bias, out);
} }
void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
...@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, ...@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
resetBwdBuffers(inGrads_, out); resetBwdBuffers(inGrads_, bias, out);
in = inGrads_[0]; in = inGrads_[0];
// backward only need share output grad to input grad // backward only need share output grad to input grad
...@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, ...@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData()); inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData());
} }
} }
// backward bias
bwdBias_ = nullptr;
if (bias) {
std::vector<double> scales(bs_, 1.0);
std::vector<memory::primitive_desc> srcPDs(bs_, bias->getPrimitiveDesc());
auto biasPD = sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs);
std::vector<primitive::at> srcs;
for (size_t i = 0; i < grads_.size(); ++i) {
srcs.push_back(*(grads_[i]));
}
bwdBias_.reset(new sum(biasPD, srcs, *bias));
pipeline.push_back(*bwdBias_);
}
} }
void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) { void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
...@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) { ...@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
} }
} }
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
const MatrixPtr& biasMat,
const MKLDNNMatrixPtr& out,
std::vector<MKLDNNMatrixPtr>& outs) {
auto pd = MKLDNNMatrix::createPrimitiveDesc(
{(int)layerSize_}, memory::format::x, engine_);
bias = MKLDNNMatrix::create(pd, biasMat);
outs.clear();
real* data = out->getData();
CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
for (int i = 0; i < bs_; ++i) {
MatrixPtr tmp =
Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
}
}
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
inputs.resize(inputLayers_.size()); inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
...@@ -110,10 +140,18 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, ...@@ -110,10 +140,18 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
} }
resetOutValue(out, inputs[0]->getPrimitiveDesc()); resetOutValue(out, inputs[0]->getPrimitiveDesc());
if (biases_ && biases_->getW()) {
prepareBias(bias, biases_->getW(), out, vals_);
} else {
bias = nullptr;
}
} }
void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd, void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out) { MKLDNNMatrixPtr out) {
std::vector<double> scales(inputs.size(), 1.0); std::vector<double> scales(inputs.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs; std::vector<memory::primitive_desc> srcPDs;
...@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd, ...@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
CHECK(out); CHECK(out);
pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs)); pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
biasPD = nullptr;
if (bias) {
std::vector<double> scales(2, 1.0);
std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
biasPD.reset(
new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
}
} }
void MKLDNNAddtoLayer::resetFwdPipeline( void MKLDNNAddtoLayer::resetFwdPipeline(
std::vector<primitive>& pipeline, std::vector<primitive>& pipeline,
std::shared_ptr<sum::primitive_desc>& pd, std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
std::vector<primitive::at> srcs; std::vector<primitive::at> srcs;
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
...@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline( ...@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline(
} }
fwd_.reset(new sum(*pd, srcs, *out)); fwd_.reset(new sum(*pd, srcs, *out));
pipeline.push_back(*fwd_); pipeline.push_back(*fwd_);
fwdBias_.clear();
if (biasPD == nullptr || bias == nullptr) {
return;
}
fwdBias_.resize(vals_.size());
for (size_t i = 0; i < vals_.size(); ++i) {
std::vector<primitive::at> srcs;
srcs.push_back(*(vals_[i]));
srcs.push_back(*bias);
fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
pipeline.push_back(*fwdBias_[i]);
}
} }
void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
CHECK(outVal_); CHECK(outVal_);
resetOutGrad(out, outVal_->getPrimitiveDesc()); resetOutGrad(out, outVal_->getPrimitiveDesc());
...@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, ...@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i); resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i);
CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc()); CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
} }
if (biases_ && biases_->getWGrad()) {
prepareBias(bias, biases_->getWGrad(), out, grads_);
} else {
bias = nullptr;
}
} }
} // namespace paddle } // namespace paddle
...@@ -32,9 +32,15 @@ protected: ...@@ -32,9 +32,15 @@ protected:
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed // layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t layerSize_; size_t layerSize_;
// TODO(TJ): this part has not been optimized by MKL-DNN
std::unique_ptr<Weight> biases_; std::unique_ptr<Weight> biases_;
// buffers for adding bias
std::vector<MKLDNNMatrixPtr> vals_;
std::vector<MKLDNNMatrixPtr> grads_;
// primitives for adding bias
std::vector<std::shared_ptr<mkldnn::primitive>> fwdBias_;
std::shared_ptr<mkldnn::primitive> bwdBias_;
public: public:
explicit MKLDNNAddtoLayer(const LayerConfig& config) : MKLDNNLayer(config) {} explicit MKLDNNAddtoLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
...@@ -91,20 +97,34 @@ protected: ...@@ -91,20 +97,34 @@ protected:
* reset pipeline. * reset pipeline.
*/ */
void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<mkldnn::sum::primitive_desc>& pd, void resetFwdPD(std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::shared_ptr<mkldnn::sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out); MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline, void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<mkldnn::sum::primitive_desc>& pd, std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::shared_ptr<mkldnn::sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
/** /**
* Backward functions: reset buffers(inputs, output, bias) * Backward functions: reset buffers(inputs, output, bias)
*/ */
void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
/**
* prepare for bias
*/
void prepareBias(MKLDNNMatrixPtr& bias,
const MatrixPtr& biasMat,
const MKLDNNMatrixPtr& out,
std::vector<MKLDNNMatrixPtr>& outs);
}; };
} // namespace paddle } // namespace paddle
...@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) { ...@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) {
TestConfig dnnConfig; TestConfig dnnConfig;
getAddtoConfig(dnnConfig, pm, nInputs); getAddtoConfig(dnnConfig, pm, nInputs);
dnnConfig.layerConfig.set_type("mkldnn_addto"); dnnConfig.layerConfig.set_type("mkldnn_addto");
// TODO(TJ): test with bias for (auto withBias : {false, true}) {
for (auto withBias : {false}) { dnnConfig.biasSize = withBias ? pm.ic * pm.ih * pm.iw : 0;
if (withBias) {
dnnConfig.biasSize = pm.ic * pm.ih * pm.iw;
} else {
dnnConfig.biasSize = 0;
}
RUN_MKLDNN_TEST_LAYER(dnnConfig, "addto", pm) RUN_MKLDNN_TEST_LAYER(dnnConfig, "addto", pm)
} }
} }
......
...@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> { ...@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
size_t num_samples = inference->dims()[0]; size_t num_samples = inference->dims()[0];
size_t infer_width = inference->dims()[1]; size_t infer_width = inference->dims()[1];
cudaMemset((void**)&accuracy_data, 0, sizeof(float)); PADDLE_ENFORCE(cudaMemset(accuracy_data, 0, sizeof(float)));
if (num_samples == 0) { if (num_samples == 0) {
return; return;
......
...@@ -75,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker ...@@ -75,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker
"with the specified value"); "with the specified value");
AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output"); AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output");
AddAttr<int>("input_dim_idx", AddAttr<int>("input_dim_idx",
"(int, default 0) the index of input's batch size dimension") "(int, default 0) The index of input's batch size dimension")
.SetDefault(0); .SetDefault(0);
AddAttr<int>("output_dim_idx", AddAttr<int>("output_dim_idx",
"(int, default 0) the index of output's batch size dimension") "(int, default 0) The index of output's batch size dimension")
.SetDefault(0); .SetDefault(0);
AddAttr<float>("value", "(float, default 0) The value to be filled") AddAttr<float>("value", "(float, default 0) The value to be filled")
.SetDefault(0.0f); .SetDefault(0.0f);
......
...@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel { ...@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel {
auto c_prev_dims = ctx->GetInputDim("C_prev"); auto c_prev_dims = ctx->GetInputDim("C_prev");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE(x_dims[0] == c_prev_dims[0], PADDLE_ENFORCE_EQ(x_dims[0], c_prev_dims[0],
"Batch size of inputs and states must be equal"); "Batch size of inputs and states must be equal");
PADDLE_ENFORCE(x_dims[1] == c_prev_dims[1] * 4, PADDLE_ENFORCE_EQ(x_dims[1], c_prev_dims[1] * 4,
"Dimension of FC should equal to prev state * 4"); "Dimension of FC should equal to prev state * 4");
int b_size = c_prev_dims[0]; // batch size int b_size = c_prev_dims[0]; // batch size
int s_dim = c_prev_dims[1]; // state dim int s_dim = c_prev_dims[1]; // state dim
......
...@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> { ...@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
const T *input_data = input->data<T>(); const T *input_data = input->data<T>();
T *output_data = output->mutable_data<T>(ctx.GetPlace()); T *output_data = output->mutable_data<T>(ctx.GetPlace());
std::string pooling_type = ctx.Attr<std::string>("poolingType"); std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("globalPooling")) { if (ctx.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
...@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> { ...@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ctx.Input<Tensor>(framework::GradVarName("Out")); ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X")); Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = ctx.Attr<std::string>("poolingType"); std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("globalPooling")) { if (ctx.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
......
...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
auto in_x_dims = ctx->GetInputDim("X"); auto in_x_dims = ctx->GetInputDim("X");
std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType"); std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize"); std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) { if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
...@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"H is the height of the feature, " "H is the height of the feature, "
"and W is the width of the feature."); "and W is the width of the feature.");
AddAttr<std::string>("poolingType", AddAttr<std::string>("pooling_type",
"(string), pooling type, can be \"max\" for max-pooling " "(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.") "and \"avg\" for average-pooling.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window " "(vector<int>) The pooling window "
"size(height, width) of the pooling operator. " "size(height, width) of the pooling operator. "
"If globalPooling = true, ksize and paddings will " "If global_pooling = true, ksize and paddings will "
"be ignored."); // TODO(Chengduo): Add checker. "be ignored."); // TODO(Chengduo): Add checker.
// (Currently, // (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>("globalPooling", AddAttr<bool>("global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, " "(vector<int>, default {1, 1}), strides(height, "
...@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"paddings", "paddings",
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling " "(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator." "operator."
"If globalPooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
Pool2d Operator. Pool2d Operator.
The pooling2d operation calculates the output based on The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters. the input, pooling_type and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature. number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements. Parameters(ksize, strides, paddings) are two elements.
...@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"the number of channels, and D, H and W is the depth, height and " "the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively."); "width of the feature, respectively.");
AddAttr<std::string>("poolingType", AddAttr<std::string>("pooling_type",
"(string) Pooling type, can be \"max\" for max-pooling " "(string) Pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.") "and \"avg\" for average-pooling.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
...@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"ksize", "ksize",
"(vector<int>) The pooling window size(depth, height, " "(vector<int>) The pooling window size(depth, height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings will " "If global_pooling = true, ksize and paddings will "
"be ignored."); // TODO(Chengduo): Add checker. "be ignored."); // TODO(Chengduo): Add checker.
// (Currently, // (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>("globalPooling", AddAttr<bool>(
"(bool, default false) Whether to use the global pooling. " "global_pooling",
"If globalPooling = true, ksize and paddings wille be ignored.") "(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings wille be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"strides", "strides",
...@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"paddings", "paddings",
"(vector<int>, defalut {0,0,0}), paddings(depth, height, " "(vector<int>, defalut {0,0,0}), paddings(depth, height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
Pool3d Operator. Pool3d Operator.
The pooling3d operation calculates the output based on The pooling3d operation calculates the output based on
the input, poolingType, ksize, strides, and paddings parameters. the input, pooling_type, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) width of the feature, respectively. Parameters(ksize, strides, paddings)
......
...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> { ...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> {
const Tensor* in_x = context.Input<Tensor>("X"); const Tensor* in_x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out"); Tensor* out = context.Output<Tensor>("Out");
std::string pooling_type = context.Attr<std::string>("poolingType"); std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
...@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> { ...@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> {
context.Input<Tensor>(framework::GradVarName("Out")); context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X")); Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = context.Attr<std::string>("poolingType"); std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
......
...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) { if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
...@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(height, " "(vector<int>) The pooling window size(height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings " "If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add "will be ignored."); // TODO(Chengduo): Add
// checker. (Currently, // checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"globalPooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, " "(vector<int>, default {1, 1}), strides(height, "
...@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings", "paddings",
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling " "(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. " "operator. "
"If globalPooling = true, paddings and will be ignored.") "If global_pooling = true, paddings and will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(depth, " "(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. " "height, width) of pooling operator. "
"If globalPooling = true, ksize and paddings " "If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add "will be ignored."); // TODO(Chengduo): Add
// checker. (Currently, // checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"globalPooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1,1,1}), strides(depth, " "(vector<int>, default {1,1,1}), strides(depth, "
...@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings", "paddings",
"(vector, defalut {0,0,0}), paddings(depth, " "(vector, defalut {0,0,0}), paddings(depth, "
"height, width) of pooling operator. " "height, width) of pooling operator. "
"If globalPooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
......
...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> { ...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
...@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> { ...@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]); ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
......
...@@ -134,9 +134,7 @@ def _create_op_func_(op_type): ...@@ -134,9 +134,7 @@ def _create_op_func_(op_type):
o_name = not_intermediate_outputs[0].name o_name = not_intermediate_outputs[0].name
intermediate_output_names = [output.name for output in intermediate_outputs] intermediate_output_names = [output.name for output in intermediate_outputs]
def func(**kwargs): def infer_and_check_data_type(op_proto, **kwargs):
helper = LayerHelper(op_type, **kwargs)
inputs = dict()
dtype = None dtype = None
for ipt in op_proto.inputs: for ipt in op_proto.inputs:
name = _convert_(ipt.name) name = _convert_(ipt.name)
...@@ -153,6 +151,20 @@ def _create_op_func_(op_type): ...@@ -153,6 +151,20 @@ def _create_op_func_(op_type):
elif dtype != each.data_type: elif dtype != each.data_type:
raise ValueError( raise ValueError(
"operator {0} must input same dtype".format(op_type)) "operator {0} must input same dtype".format(op_type))
return dtype
def func(**kwargs):
helper = LayerHelper(op_type, **kwargs)
dtype = infer_and_check_data_type(op_proto, **kwargs)
inputs = dict()
for ipt in op_proto.inputs:
name = _convert_(ipt.name)
val = kwargs.pop(name, [])
if not isinstance(val, list) and not isinstance(val, tuple):
val = [val]
inputs[ipt.name] = val inputs[ipt.name] = val
outputs = dict() outputs = dict()
...@@ -178,6 +190,20 @@ _create_op_func_('reshape') ...@@ -178,6 +190,20 @@ _create_op_func_('reshape')
_create_op_func_('elementwise_add') _create_op_func_('elementwise_add')
_create_op_func_('sigmoid') _create_op_func_('sigmoid')
_create_op_func_('scale') _create_op_func_('scale')
_create_op_func_('reshape')
_create_op_func_('transpose')
def fill_constant(data_type, shape, value=None, program=None):
helper = LayerHelper('fill_constant', **locals())
out = helper.create_tmp_variable(dtype=data_type)
helper.append_op(
type='fill_constant',
outputs={'Out': [out]},
attrs={'data_type': data_type,
'shape': shape,
'value': value})
return out
def cast(x, data_type, main_program=None): def cast(x, data_type, main_program=None):
...@@ -414,9 +440,9 @@ def pool2d(input, ...@@ -414,9 +440,9 @@ def pool2d(input,
inputs={"X": input}, inputs={"X": input},
outputs={"Out": pool_out}, outputs={"Out": pool_out},
attrs={ attrs={
"poolingType": pool_type, "pooling_type": pool_type,
"ksize": pool_size, "ksize": pool_size,
"globalPooling": global_pooling, "global_pooling": global_pooling,
"strides": pool_stride, "strides": pool_stride,
"paddings": pool_padding "paddings": pool_padding
}) })
...@@ -762,6 +788,46 @@ class StaticRNN(object): ...@@ -762,6 +788,46 @@ class StaticRNN(object):
}) })
def lstm(x,
c_pre_init,
hidden_dim,
forget_bias=None,
main_program=None,
startup_program=None):
helper = LayerHelper('lstm_unit', **locals())
rnn = StaticRNN()
with rnn.step():
c_pre = rnn.memory(init=c_pre_init)
x_t = rnn.step_input(x)
before_fc = concat(
input=[x_t, c_pre],
axis=1,
main_program=main_program,
startup_program=startup_program)
after_fc = fc(input=before_fc,
size=hidden_dim * 4,
main_program=main_program,
startup_program=startup_program)
data_type = x.data_type
c = helper.create_tmp_variable(data_type)
h = helper.create_tmp_variable(data_type)
helper.append_op(
type='lstm_unit',
inputs={"X": after_fc,
"C_prev": c_pre},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
rnn.update_memory(c_pre, c)
rnn.output(h)
return rnn()
def lod_rank_table(x, level=0, main_program=None): def lod_rank_table(x, level=0, main_program=None):
helper = LayerHelper("lod_rank_table", **locals()) helper = LayerHelper("lod_rank_table", **locals())
table = helper.create_variable( table = helper.create_variable(
......
...@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest): ...@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest):
if __name__ == '__main__': if __name__ == '__main__':
exit(0)
unittest.main() unittest.main()
...@@ -61,8 +61,8 @@ class TestPool2d_Op(OpTest): ...@@ -61,8 +61,8 @@ class TestPool2d_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'poolingType': self.pool_type, 'pooling_type': self.pool_type,
'globalPooling': self.global_pool, 'global_pooling': self.global_pool,
} }
self.outputs = {'Out': output.astype('float32')} self.outputs = {'Out': output.astype('float32')}
......
...@@ -67,8 +67,8 @@ class TestPool3d_Op(OpTest): ...@@ -67,8 +67,8 @@ class TestPool3d_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'poolingType': self.pool_type, 'pooling_type': self.pool_type,
'globalPooling': self.global_pool, 'global_pooling': self.global_pool,
} }
self.outputs = {'Out': output.astype('float32')} self.outputs = {'Out': output.astype('float32')}
......
...@@ -86,7 +86,7 @@ class TestMaxPoolWithIndex_Op(OpTest): ...@@ -86,7 +86,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'globalPooling': self.global_pool, 'global_pooling': self.global_pool,
} }
self.inputs = {'X': input} self.inputs = {'X': input}
......
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import g_main_program, g_startup_program
from paddle.v2.framework.executor import Executor
import numpy as np
def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
data = layers.data(
name="words",
shape=[seq_len * batch_size, 1],
append_batch_size=False,
data_type="int64")
label = layers.data(
name="label",
shape=[batch_size, 1],
append_batch_size=False,
data_type="int64")
emb = layers.embedding(input=data, size=[dict_dim, emb_dim])
emb = layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim])
emb = layers.transpose(x=emb, axis=[1, 0, 2])
c_pre_init = layers.fill_constant(
dtype=emb.data_type, shape=[batch_size, emb_dim], value=0.0)
layer_1_out = layers.lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = layers.transpose(x=layer_1_out, axis=[1, 0, 2])
prediction = layers.fc(input=layer_1_out, size=class_dim, act="softmax")
cost = layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002)
opts = adam_optimizer.minimize(avg_cost)
acc = layers.accuracy(input=prediction, label=label)
return avg_cost, acc
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def chop_data(data, chop_len=80, batch_len=50):
data = [(x[0][:chop_len], x[1]) for x in data if len(x[0]) >= chop_len]
return data[:batch_len]
def prepare_feed_data(data, place):
tensor_words = to_lodtensor(map(lambda x: x[0], data), place)
label = np.array(map(lambda x: x[1], data)).astype("int64")
label = label.reshape([50, 1])
tensor_label = core.LoDTensor()
tensor_label.set(label, place)
return tensor_words, tensor_label
def main():
word_dict = paddle.dataset.imdb.word_dict()
cost, acc = lstm_net(dict_dim=len(word_dict), class_dim=2)
batch_size = 100
train_data = paddle.batch(
paddle.reader.buffered(
paddle.dataset.imdb.train(word_dict), size=batch_size * 10),
batch_size=batch_size)
data = chop_data(next(train_data()))
place = core.CPUPlace()
tensor_words, tensor_label = prepare_feed_data(data, place)
exe = Executor(place)
exe.run(g_startup_program)
while True:
outs = exe.run(g_main_program,
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc])
cost_val = np.array(outs[0])
acc_val = np.array(outs[1])
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
if acc_val > 0.9:
break
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册