Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f3bb7b99
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3bb7b99
编写于
9月 11, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine MKLDNNTester add UpdateCallback for test
上级
94ea8ee0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
51 addition
and
38 deletion
+51
-38
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+44
-33
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+7
-5
未找到文件。
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
f3bb7b99
...
@@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn,
...
@@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn,
initTestLayer
(
initTestLayer
(
configs_
[
i
],
&
(
layerMaps_
[
i
]),
&
(
parameters_
[
i
]),
&
(
testLayers_
[
i
]));
configs_
[
i
],
&
(
layerMaps_
[
i
]),
&
(
parameters_
[
i
]),
&
(
testLayers_
[
i
]));
}
}
dnnLayer_
=
testLayers_
[
DNN
];
refLayer_
=
testLayers_
[
REF
];
refLayer_
=
testLayers_
[
REF
];
dnnLayer_
=
std
::
dynamic_pointer_cast
<
MKLDNNLayer
>
(
testLayers_
[
DNN
]);
CHECK
(
dnnLayer_
);
// for comparison with Paddle reference results,
// need manually add cpu device output for test
dnnLayer_
->
addOutputArgument
(
-
1
);
EXPECT_EQ
(
dataLayers_
[
DNN
].
size
(),
dataLayers_
[
REF
].
size
());
EXPECT_EQ
(
dataLayers_
[
DNN
].
size
(),
dataLayers_
[
REF
].
size
());
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
...
@@ -109,20 +113,21 @@ void MKLDNNTester::randomBotDatas() {
...
@@ -109,20 +113,21 @@ void MKLDNNTester::randomBotDatas() {
void
MKLDNNTester
::
randomTopDiffs
()
{
void
MKLDNNTester
::
randomTopDiffs
()
{
refLayer_
->
getOutputGrad
()
->
randomizeUniform
();
refLayer_
->
getOutputGrad
()
->
randomizeUniform
();
dnnLayer_
->
getOutput
Grad
()
->
copyFrom
(
*
(
refLayer_
->
getOutputGrad
()));
dnnLayer_
->
getOutput
(
-
1
).
grad
->
copyFrom
(
*
(
refLayer_
->
getOutputGrad
()));
VLOG
(
lvl_
)
<<
"Random
dom
Backward Input, TopDiff: "
;
VLOG
(
lvl_
)
<<
"Random Backward Input, TopDiff: "
;
printMatrix
(
refLayer_
->
getOutputGrad
());
printMatrix
(
refLayer_
->
getOutputGrad
());
}
}
void
MKLDNNTester
::
checkForward
()
{
void
MKLDNNTester
::
checkForward
()
{
printTopDatas
();
double
delta
=
compareMatrix
(
testLayers_
[
DNN
]
->
getOutputValue
(),
testLayers_
[
REF
]
->
getOutputValue
());
VLOG
(
MKLDNN_ALL
)
<<
"Check Forward"
;
VLOG
(
MKLDNN_ALL
)
<<
"Check Forward"
;
printTopDatas
();
double
delta
=
compareMatrix
(
dnnLayer_
->
getOutput
(
-
1
).
value
,
refLayer_
->
getOutputValue
());
EXPECT_LE
(
fabs
(
delta
),
eps_
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
}
void
MKLDNNTester
::
checkBackwardData
()
{
void
MKLDNNTester
::
checkBackwardData
()
{
VLOG
(
MKLDNN_ALL
)
<<
"Check Backward Data"
;
// TODO(TJ): uncomment me when batch norm ready
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
...
@@ -144,14 +149,12 @@ void MKLDNNTester::checkBackwardData() {
...
@@ -144,14 +149,12 @@ void MKLDNNTester::checkBackwardData() {
}
}
void
MKLDNNTester
::
checkBackwardWgts
()
{
void
MKLDNNTester
::
checkBackwardWgts
()
{
VLOG
(
MKLDNN_ALL
)
<<
"Check Backward Weight"
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
vector
<
VectorPtr
>
dnnWgts
;
// used to temply save mkldnn weights
vector
<
VectorPtr
>
dnnWgts
;
// used to temply save mkldnn weights
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
const
MKLDNNLayerPtr
dnnlayer
=
dnnLayer_
->
convertWeightsToPaddle
();
std
::
dynamic_pointer_cast
<
MKLDNNLayer
>
(
dnnLayer_
);
CHECK
(
dnnlayer
);
dnnlayer
->
convertWeightsToPaddle
();
for
(
size_t
i
=
0
;
i
<
parameters_
[
DNN
].
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
parameters_
[
DNN
].
size
();
++
i
)
{
const
VectorPtr
&
dnn
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
dnn
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
ref
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
ref
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
...
@@ -189,38 +192,38 @@ void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
...
@@ -189,38 +192,38 @@ void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
}
}
// clear parameters grad
// clear parameters grad
void
MKLDNNTester
::
clearWgtDiffs
()
{
void
MKLDNNTester
::
clearWgtDiffs
(
size_t
id
)
{
CHECK_LE
(
id
,
parameters_
.
size
());
for
(
size_t
n
=
0
;
n
<
parameters_
.
size
();
++
n
)
{
for
(
size_t
n
=
0
;
n
<
parameters_
.
size
();
++
n
)
{
for
(
size_t
i
=
0
;
i
<
parameters_
[
n
].
size
();
++
i
)
{
if
(
id
==
n
||
id
==
parameters_
.
size
())
{
const
VectorPtr
&
grad
=
parameters_
[
n
][
i
]
->
getBuf
(
PARAMETER_GRADIENT
);
for
(
size_t
i
=
0
;
i
<
parameters_
[
n
].
size
();
++
i
)
{
if
(
grad
)
{
const
VectorPtr
&
grad
=
parameters_
[
n
][
i
]
->
getBuf
(
PARAMETER_GRADIENT
);
grad
->
zeroMem
();
if
(
grad
)
{
grad
->
zeroMem
();
}
}
}
}
}
}
}
}
}
void
MKLDNNTester
::
clearBotDiffs
()
{
void
MKLDNNTester
::
clearBotDiffs
(
size_t
id
)
{
// dnn and ref
CHECK_LE
(
id
,
dataLayers_
.
size
());
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
// all inputs layers
if
(
id
==
n
||
id
==
dataLayers_
.
size
())
{
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
// clear inputs layers of this specific layer
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
}
}
}
}
}
void
MKLDNNTester
::
clearBotDiffs
(
int
n
)
{
void
MKLDNNTester
::
clearTopDatas
(
size_t
id
)
{
CHECK_LT
(
n
,
NUM
);
CHECK_LE
(
id
,
testLayers_
.
size
());
// all inputs layers
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
void
MKLDNNTester
::
clearTopDatas
()
{
for
(
size_t
i
=
0
;
i
<
testLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
testLayers_
.
size
();
++
i
)
{
testLayers_
[
i
]
->
getOutputValue
()
->
zeroMem
();
if
(
id
==
i
||
id
==
testLayers_
.
size
())
{
testLayers_
[
i
]
->
getOutputValue
()
->
zeroMem
();
}
}
}
}
}
...
@@ -300,16 +303,24 @@ void MKLDNNTester::runOnce() {
...
@@ -300,16 +303,24 @@ void MKLDNNTester::runOnce() {
checkForward
();
checkForward
();
// test backward
// test backward
// simple updater
UpdateCallback
updateCallback
=
[](
Parameter
*
para
)
{
auto
&
grad
=
para
->
getBuf
(
PARAMETER_GRADIENT
);
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
real
lr
=
1e-3
;
value
->
add
(
*
grad
,
lr
);
};
randomTopDiffs
();
randomTopDiffs
();
dnnLayer_
->
backward
(
nullptr
);
dnnLayer_
->
backward
(
updateCallback
);
refLayer_
->
backward
(
nullptr
);
refLayer_
->
backward
(
updateCallback
);
checkBackwardData
();
checkBackwardData
();
checkBackwardWgts
();
checkBackwardWgts
();
// clear buffers
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas(
) and clearWgtDiffs() should be coverd by test
layers
// and clearTopDatas(
REF) should be coverd by ref
layers
clearBotDiffs
(
REF
);
clearBotDiffs
(
REF
);
clearWgtDiffs
(
REF
);
}
}
void
MKLDNNTester
::
run
(
const
TestConfig
&
dnn
,
void
MKLDNNTester
::
run
(
const
TestConfig
&
dnn
,
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
f3bb7b99
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "LayerGradUtil.h"
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -40,7 +41,8 @@ protected:
...
@@ -40,7 +41,8 @@ protected:
vector
<
LayerMap
>
layerMaps_
;
vector
<
LayerMap
>
layerMaps_
;
vector
<
vector
<
ParameterPtr
>>
parameters_
;
vector
<
vector
<
ParameterPtr
>>
parameters_
;
vector
<
LayerPtr
>
testLayers_
;
vector
<
LayerPtr
>
testLayers_
;
LayerPtr
dnnLayer_
,
refLayer_
;
LayerPtr
refLayer_
;
MKLDNNLayerPtr
dnnLayer_
;
/// run some iterations, all the result should pass
/// run some iterations, all the result should pass
size_t
iter_
;
size_t
iter_
;
...
@@ -88,10 +90,10 @@ private:
...
@@ -88,10 +90,10 @@ private:
void
checkBackwardData
();
void
checkBackwardData
();
void
checkBackwardWgts
();
void
checkBackwardWgts
();
void
clearWgtDiffs
();
// clear specific layer, clear all when id equals NUM
void
clear
BotDiffs
(
);
void
clear
WgtDiffs
(
size_t
id
=
NUM
);
void
clearBotDiffs
(
int
n
);
// clear specific layer
void
clearBotDiffs
(
size_t
id
=
NUM
);
void
clearTopDatas
();
void
clearTopDatas
(
size_t
id
=
NUM
);
void
printTopDatas
();
void
printTopDatas
();
void
printMatrix
(
const
MatrixPtr
&
m
);
void
printMatrix
(
const
MatrixPtr
&
m
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录