Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f3531c7b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f3531c7b
编写于
4月 18, 2022
作者:
H
huzhiqiang
提交者:
GitHub
4月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[infrt] add efficientnet model (#41507)
上级
037c8099
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
718 addition
and
5 deletion
+718
-5
paddle/infrt/tests/models/efficientnet-b4/model.py
paddle/infrt/tests/models/efficientnet-b4/model.py
+26
-0
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
+15
-0
paddle/infrt/tests/models/efficientnet-b4/net/efficientnet.py
...le/infrt/tests/models/efficientnet-b4/net/efficientnet.py
+284
-0
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
+385
-0
paddle/scripts/infrt_build.sh
paddle/scripts/infrt_build.sh
+8
-5
未找到文件。
paddle/infrt/tests/models/efficientnet-b4/model.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# url: https://aistudio.baidu.com/aistudio/projectdetail/3756986?forkThirdPart=1
from
net
import
EfficientNet
from
paddle.jit
import
to_static
from
paddle.static
import
InputSpec
import
paddle
import
sys
model
=
EfficientNet
.
from_name
(
'efficientnet-b4'
)
net
=
to_static
(
model
,
input_spec
=
[
InputSpec
(
shape
=
[
None
,
3
,
256
,
256
],
name
=
'x'
)])
paddle
.
jit
.
save
(
net
,
sys
.
argv
[
1
])
paddle/infrt/tests/models/efficientnet-b4/net/__init__.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.efficientnet
import
EfficientNet
paddle/infrt/tests/models/efficientnet-b4/net/efficientnet.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
.utils
import
(
round_filters
,
round_repeats
,
drop_connect
,
get_same_padding_conv2d
,
get_model_params
,
efficientnet_params
,
load_pretrained_weights
)
class
MBConvBlock
(
nn
.
Layer
):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def
__init__
(
self
,
block_args
,
global_params
):
super
().
__init__
()
self
.
_block_args
=
block_args
self
.
_bn_mom
=
global_params
.
batch_norm_momentum
self
.
_bn_eps
=
global_params
.
batch_norm_epsilon
self
.
has_se
=
(
self
.
_block_args
.
se_ratio
is
not
None
)
and
(
0
<
self
.
_block_args
.
se_ratio
<=
1
)
self
.
id_skip
=
block_args
.
id_skip
# skip connection and drop connect
# Get static or dynamic convolution depending on image size
Conv2d
=
get_same_padding_conv2d
(
image_size
=
global_params
.
image_size
)
# Expansion phase
inp
=
self
.
_block_args
.
input_filters
# number of input channels
oup
=
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
expand_ratio
# number of output channels
if
self
.
_block_args
.
expand_ratio
!=
1
:
self
.
_expand_conv
=
Conv2d
(
in_channels
=
inp
,
out_channels
=
oup
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm2D
(
num_features
=
oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
# Depthwise convolution phase
k
=
self
.
_block_args
.
kernel_size
s
=
self
.
_block_args
.
stride
self
.
_depthwise_conv
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
oup
,
groups
=
oup
,
# groups makes it depthwise
kernel_size
=
k
,
stride
=
s
,
bias_attr
=
False
)
self
.
_bn1
=
nn
.
BatchNorm2D
(
num_features
=
oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
# Squeeze and Excitation layer, if desired
if
self
.
has_se
:
num_squeezed_channels
=
max
(
1
,
int
(
self
.
_block_args
.
input_filters
*
self
.
_block_args
.
se_ratio
))
self
.
_se_reduce
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
num_squeezed_channels
,
kernel_size
=
1
)
self
.
_se_expand
=
Conv2d
(
in_channels
=
num_squeezed_channels
,
out_channels
=
oup
,
kernel_size
=
1
)
# Output phase
final_oup
=
self
.
_block_args
.
output_filters
self
.
_project_conv
=
Conv2d
(
in_channels
=
oup
,
out_channels
=
final_oup
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn2
=
nn
.
BatchNorm2D
(
num_features
=
final_oup
,
momentum
=
self
.
_bn_mom
,
epsilon
=
self
.
_bn_eps
)
self
.
_swish
=
nn
.
Hardswish
()
def
forward
(
self
,
inputs
,
drop_connect_rate
=
None
):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x
=
inputs
if
self
.
_block_args
.
expand_ratio
!=
1
:
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_expand_conv
(
inputs
)))
x
=
self
.
_swish
(
self
.
_bn1
(
self
.
_depthwise_conv
(
x
)))
# Squeeze and Excitation
if
self
.
has_se
:
x_squeezed
=
F
.
adaptive_avg_pool2d
(
x
,
1
)
x_squeezed
=
self
.
_se_expand
(
self
.
_swish
(
self
.
_se_reduce
(
x_squeezed
)))
x
=
F
.
sigmoid
(
x_squeezed
)
*
x
x
=
self
.
_bn2
(
self
.
_project_conv
(
x
))
# Skip connection and drop connect
input_filters
,
output_filters
=
self
.
_block_args
.
input_filters
,
self
.
_block_args
.
output_filters
if
self
.
id_skip
and
self
.
_block_args
.
stride
==
1
and
input_filters
==
output_filters
:
if
drop_connect_rate
:
x
=
drop_connect
(
x
,
prob
=
drop_connect_rate
,
training
=
self
.
training
)
x
=
x
+
inputs
# skip connection
return
x
def
set_swish
(
self
,
memory_efficient
=
True
):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self
.
_swish
=
nn
.
Hardswish
()
if
memory_efficient
else
nn
.
Swish
()
class
EfficientNet
(
nn
.
Layer
):
"""
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
Args:
blocks_args (list): A list of BlockArgs to construct blocks
global_params (namedtuple): A set of GlobalParams shared between blocks
Example:
model = EfficientNet.from_pretrained('efficientnet-b0')
"""
def
__init__
(
self
,
blocks_args
=
None
,
global_params
=
None
):
super
().
__init__
()
assert
isinstance
(
blocks_args
,
list
),
'blocks_args should be a list'
assert
len
(
blocks_args
)
>
0
,
'block args must be greater than 0'
self
.
_global_params
=
global_params
self
.
_blocks_args
=
blocks_args
# Get static or dynamic convolution depending on image size
Conv2d
=
get_same_padding_conv2d
(
image_size
=
global_params
.
image_size
)
# Batch norm parameters
bn_mom
=
self
.
_global_params
.
batch_norm_momentum
bn_eps
=
self
.
_global_params
.
batch_norm_epsilon
# Stem
in_channels
=
3
# rgb
out_channels
=
round_filters
(
32
,
self
.
_global_params
)
# number of output channels
self
.
_conv_stem
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
2
,
bias_attr
=
False
)
self
.
_bn0
=
nn
.
BatchNorm2D
(
num_features
=
out_channels
,
momentum
=
bn_mom
,
epsilon
=
bn_eps
)
# Build blocks
self
.
_blocks
=
nn
.
LayerList
([])
for
block_args
in
self
.
_blocks_args
:
# Update block input and output filters based on depth multiplier.
block_args
=
block_args
.
_replace
(
input_filters
=
round_filters
(
block_args
.
input_filters
,
self
.
_global_params
),
output_filters
=
round_filters
(
block_args
.
output_filters
,
self
.
_global_params
),
num_repeat
=
round_repeats
(
block_args
.
num_repeat
,
self
.
_global_params
))
# The first block needs to take care of stride and filter size increase.
self
.
_blocks
.
append
(
MBConvBlock
(
block_args
,
self
.
_global_params
))
if
block_args
.
num_repeat
>
1
:
block_args
=
block_args
.
_replace
(
input_filters
=
block_args
.
output_filters
,
stride
=
1
)
for
_
in
range
(
block_args
.
num_repeat
-
1
):
self
.
_blocks
.
append
(
MBConvBlock
(
block_args
,
self
.
_global_params
))
# Head
in_channels
=
block_args
.
output_filters
# output of final block
out_channels
=
round_filters
(
1280
,
self
.
_global_params
)
self
.
_conv_head
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
bias_attr
=
False
)
self
.
_bn1
=
nn
.
BatchNorm2D
(
num_features
=
out_channels
,
momentum
=
bn_mom
,
epsilon
=
bn_eps
)
# Final linear layer
self
.
_avg_pooling
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
_dropout
=
nn
.
Dropout
(
self
.
_global_params
.
dropout_rate
)
self
.
_fc
=
nn
.
Linear
(
out_channels
,
self
.
_global_params
.
num_classes
)
self
.
_swish
=
nn
.
Hardswish
()
def
set_swish
(
self
,
memory_efficient
=
True
):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self
.
_swish
=
nn
.
Hardswish
()
if
memory_efficient
else
nn
.
Swish
()
for
block
in
self
.
_blocks
:
block
.
set_swish
(
memory_efficient
)
def
extract_features
(
self
,
inputs
):
""" Returns output of the final convolution layer """
# Stem
x
=
self
.
_swish
(
self
.
_bn0
(
self
.
_conv_stem
(
inputs
)))
# Blocks
for
idx
,
block
in
enumerate
(
self
.
_blocks
):
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
drop_connect_rate
:
drop_connect_rate
*=
float
(
idx
)
/
len
(
self
.
_blocks
)
x
=
block
(
x
,
drop_connect_rate
=
drop_connect_rate
)
# Head
x
=
self
.
_swish
(
self
.
_bn1
(
self
.
_conv_head
(
x
)))
return
x
def
forward
(
self
,
inputs
):
""" Calls extract_features to extract features, applies final linear layer, and returns logits. """
bs
=
inputs
.
shape
[
0
]
# Convolution layers
x
=
self
.
extract_features
(
inputs
)
# Pooling and final linear layer
x
=
self
.
_avg_pooling
(
x
)
x
=
paddle
.
reshape
(
x
,
(
bs
,
-
1
))
x
=
self
.
_dropout
(
x
)
x
=
self
.
_fc
(
x
)
return
x
@
classmethod
def
from_name
(
cls
,
model_name
,
override_params
=
None
):
cls
.
_check_model_name_is_valid
(
model_name
)
blocks_args
,
global_params
=
get_model_params
(
model_name
,
override_params
)
return
cls
(
blocks_args
,
global_params
)
@
classmethod
def
from_pretrained
(
cls
,
model_name
,
advprop
=
False
,
num_classes
=
1000
,
in_channels
=
3
):
model
=
cls
.
from_name
(
model_name
,
override_params
=
{
'num_classes'
:
num_classes
})
load_pretrained_weights
(
model
,
model_name
,
load_fc
=
(
num_classes
==
1000
),
advprop
=
advprop
)
if
in_channels
!=
3
:
Conv2d
=
get_same_padding_conv2d
(
image_size
=
model
.
_global_params
.
image_size
)
out_channels
=
round_filters
(
32
,
model
.
_global_params
)
model
.
_conv_stem
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
2
,
bias_attr
=
False
)
return
model
@
classmethod
def
get_image_size
(
cls
,
model_name
):
cls
.
_check_model_name_is_valid
(
model_name
)
_
,
_
,
res
,
_
=
efficientnet_params
(
model_name
)
return
res
@
classmethod
def
_check_model_name_is_valid
(
cls
,
model_name
):
""" Validates model name. """
valid_models
=
[
'efficientnet-b'
+
str
(
i
)
for
i
in
range
(
9
)]
if
model_name
not
in
valid_models
:
raise
ValueError
(
'model_name should be one of: '
+
', '
.
join
(
valid_models
))
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
0 → 100644
浏览文件 @
f3531c7b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
re
import
math
from
functools
import
partial
import
collections
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams
=
collections
.
namedtuple
(
'GlobalParams'
,
[
'batch_norm_momentum'
,
'batch_norm_epsilon'
,
'dropout_rate'
,
'num_classes'
,
'width_coefficient'
,
'depth_coefficient'
,
'depth_divisor'
,
'min_depth'
,
'drop_connect_rate'
,
'image_size'
])
# Parameters for an individual model block
BlockArgs
=
collections
.
namedtuple
(
'BlockArgs'
,
[
'kernel_size'
,
'num_repeat'
,
'input_filters'
,
'output_filters'
,
'expand_ratio'
,
'id_skip'
,
'stride'
,
'se_ratio'
])
# Change namedtuple defaults
GlobalParams
.
__new__
.
__defaults__
=
(
None
,
)
*
len
(
GlobalParams
.
_fields
)
BlockArgs
.
__new__
.
__defaults__
=
(
None
,
)
*
len
(
BlockArgs
.
_fields
)
def
round_filters
(
filters
,
global_params
):
""" Calculate and round number of filters based on depth multiplier. """
multiplier
=
global_params
.
width_coefficient
if
not
multiplier
:
return
filters
divisor
=
global_params
.
depth_divisor
min_depth
=
global_params
.
min_depth
filters
*=
multiplier
min_depth
=
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_filters
<
0.9
*
filters
:
# prevent rounding by more than 10%
new_filters
+=
divisor
return
int
(
new_filters
)
def
round_repeats
(
repeats
,
global_params
):
""" Round number of filters based on depth multiplier. """
multiplier
=
global_params
.
depth_coefficient
if
not
multiplier
:
return
repeats
return
int
(
math
.
ceil
(
multiplier
*
repeats
))
def
drop_connect
(
inputs
,
prob
,
training
):
"""Drop input connection"""
if
not
training
:
return
inputs
keep_prob
=
1.0
-
prob
inputs_shape
=
paddle
.
shape
(
inputs
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
=
[
inputs_shape
[
0
],
1
,
1
,
1
])
binary_tensor
=
paddle
.
floor
(
random_tensor
)
output
=
inputs
/
keep_prob
*
binary_tensor
return
output
def
get_same_padding_conv2d
(
image_size
=
None
):
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models. """
if
image_size
is
None
:
return
Conv2dDynamicSamePadding
else
:
return
partial
(
Conv2dStaticSamePadding
,
image_size
=
image_size
)
class
Conv2dDynamicSamePadding
(
nn
.
Conv2D
):
""" 2D Convolutions like TensorFlow, for a dynamic image size """
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
dilation
=
1
,
groups
=
1
,
bias_attr
=
None
):
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
0
,
dilation
,
groups
,
bias_attr
=
bias_attr
)
self
.
stride
=
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
def
forward
(
self
,
x
):
ih
,
iw
=
x
.
shape
[
-
2
:]
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
((
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
((
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
x
=
F
.
pad
(
x
,
[
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
])
return
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
)
class
Conv2dStaticSamePadding
(
nn
.
Conv2D
):
""" 2D Convolutions like TensorFlow, for a fixed image size"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
image_size
=
None
,
**
kwargs
):
if
'stride'
in
kwargs
and
isinstance
(
kwargs
[
'stride'
],
list
):
kwargs
[
'stride'
]
=
kwargs
[
'stride'
][
0
]
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
**
kwargs
)
self
.
stride
=
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
# Calculate padding based on image size and save it
assert
image_size
is
not
None
ih
,
iw
=
image_size
if
type
(
image_size
)
==
list
else
[
image_size
,
image_size
]
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
((
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
((
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
self
.
static_padding
=
nn
.
Pad2D
([
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
])
else
:
self
.
static_padding
=
Identity
()
def
forward
(
self
,
x
):
x
=
self
.
static_padding
(
x
)
x
=
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
)
return
x
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
,
):
super
().
__init__
()
def
forward
(
self
,
x
):
return
x
def
efficientnet_params
(
model_name
):
""" Map EfficientNet model name to parameter coefficients. """
params_dict
=
{
# Coefficients: width,depth,resolution,dropout
'efficientnet-b0'
:
(
1.0
,
1.0
,
224
,
0.2
),
'efficientnet-b1'
:
(
1.0
,
1.1
,
240
,
0.2
),
'efficientnet-b2'
:
(
1.1
,
1.2
,
260
,
0.3
),
'efficientnet-b3'
:
(
1.2
,
1.4
,
300
,
0.3
),
'efficientnet-b4'
:
(
1.4
,
1.8
,
380
,
0.4
),
'efficientnet-b5'
:
(
1.6
,
2.2
,
456
,
0.4
),
'efficientnet-b6'
:
(
1.8
,
2.6
,
528
,
0.5
),
'efficientnet-b7'
:
(
2.0
,
3.1
,
600
,
0.5
),
'efficientnet-b8'
:
(
2.2
,
3.6
,
672
,
0.5
),
'efficientnet-l2'
:
(
4.3
,
5.3
,
800
,
0.5
),
}
return
params_dict
[
model_name
]
class
BlockDecoder
(
object
):
""" Block Decoder for readability, straight from the official TensorFlow repository """
@
staticmethod
def
_decode_block_string
(
block_string
):
""" Gets a block through a string notation of arguments. """
assert
isinstance
(
block_string
,
str
)
ops
=
block_string
.
split
(
'_'
)
options
=
{}
for
op
in
ops
:
splits
=
re
.
split
(
r
'(\d.*)'
,
op
)
if
len
(
splits
)
>=
2
:
key
,
value
=
splits
[:
2
]
options
[
key
]
=
value
# Check stride
assert
((
's'
in
options
and
len
(
options
[
's'
])
==
1
)
or
(
len
(
options
[
's'
])
==
2
and
options
[
's'
][
0
]
==
options
[
's'
][
1
]))
return
BlockArgs
(
kernel_size
=
int
(
options
[
'k'
]),
num_repeat
=
int
(
options
[
'r'
]),
input_filters
=
int
(
options
[
'i'
]),
output_filters
=
int
(
options
[
'o'
]),
expand_ratio
=
int
(
options
[
'e'
]),
id_skip
=
(
'noskip'
not
in
block_string
),
se_ratio
=
float
(
options
[
'se'
])
if
'se'
in
options
else
None
,
stride
=
[
int
(
options
[
's'
][
0
])])
@
staticmethod
def
_encode_block_string
(
block
):
"""Encodes a block to a string."""
args
=
[
'r%d'
%
block
.
num_repeat
,
'k%d'
%
block
.
kernel_size
,
's%d%d'
%
(
block
.
strides
[
0
],
block
.
strides
[
1
]),
'e%s'
%
block
.
expand_ratio
,
'i%d'
%
block
.
input_filters
,
'o%d'
%
block
.
output_filters
]
if
0
<
block
.
se_ratio
<=
1
:
args
.
append
(
'se%s'
%
block
.
se_ratio
)
if
block
.
id_skip
is
False
:
args
.
append
(
'noskip'
)
return
'_'
.
join
(
args
)
@
staticmethod
def
decode
(
string_list
):
"""
Decodes a list of string notations to specify blocks inside the network.
:param string_list: a list of strings, each string is a notation of block
:return: a list of BlockArgs namedtuples of block args
"""
assert
isinstance
(
string_list
,
list
)
blocks_args
=
[]
for
block_string
in
string_list
:
blocks_args
.
append
(
BlockDecoder
.
_decode_block_string
(
block_string
))
return
blocks_args
@
staticmethod
def
encode
(
blocks_args
):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings
=
[]
for
block
in
blocks_args
:
block_strings
.
append
(
BlockDecoder
.
_encode_block_string
(
block
))
return
block_strings
def
efficientnet
(
width_coefficient
=
None
,
depth_coefficient
=
None
,
dropout_rate
=
0.2
,
drop_connect_rate
=
0.2
,
image_size
=
None
,
num_classes
=
1000
):
""" Get block arguments according to parameter and coefficients. """
blocks_args
=
[
'r1_k3_s11_e1_i32_o16_se0.25'
,
'r2_k3_s22_e6_i16_o24_se0.25'
,
'r2_k5_s22_e6_i24_o40_se0.25'
,
'r3_k3_s22_e6_i40_o80_se0.25'
,
'r3_k5_s11_e6_i80_o112_se0.25'
,
'r4_k5_s22_e6_i112_o192_se0.25'
,
'r1_k3_s11_e6_i192_o320_se0.25'
,
]
blocks_args
=
BlockDecoder
.
decode
(
blocks_args
)
global_params
=
GlobalParams
(
batch_norm_momentum
=
0.99
,
batch_norm_epsilon
=
1e-3
,
dropout_rate
=
dropout_rate
,
drop_connect_rate
=
drop_connect_rate
,
num_classes
=
num_classes
,
width_coefficient
=
width_coefficient
,
depth_coefficient
=
depth_coefficient
,
depth_divisor
=
8
,
min_depth
=
None
,
image_size
=
image_size
,
)
return
blocks_args
,
global_params
def
get_model_params
(
model_name
,
override_params
):
""" Get the block args and global params for a given model """
if
model_name
.
startswith
(
'efficientnet'
):
w
,
d
,
s
,
p
=
efficientnet_params
(
model_name
)
blocks_args
,
global_params
=
efficientnet
(
width_coefficient
=
w
,
depth_coefficient
=
d
,
dropout_rate
=
p
,
image_size
=
s
)
else
:
raise
NotImplementedError
(
'model name is not pre-defined: %s'
%
model_name
)
if
override_params
:
global_params
=
global_params
.
_replace
(
**
override_params
)
return
blocks_args
,
global_params
url_map
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/efficientnet-b0-355c32eb.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/efficientnet-b1-f1951068.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/efficientnet-b2-8bb594d6.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/efficientnet-b3-5fb5a3c3.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/efficientnet-b4-6ed6700e.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/efficientnet-b5-b6417697.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/efficientnet-b6-c76e70fd.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/efficientnet-b7-dcc49843.pdparams'
,
}
url_map_advprop
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/adv-efficientnet-b0-b64d5a18.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/adv-efficientnet-b1-0f3ce85a.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/adv-efficientnet-b2-6e9d97e5.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/adv-efficientnet-b3-cdd7c0f4.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/adv-efficientnet-b4-44fb3a87.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/adv-efficientnet-b5-86493f6b.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/adv-efficientnet-b6-ac80338e.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/adv-efficientnet-b7-4652b6dd.pdparams'
,
'efficientnet-b8'
:
'/home/aistudio/data/weights/adv-efficientnet-b8-22a8fe65.pdparams'
,
}
def
load_pretrained_weights
(
model
,
model_name
,
weights_path
=
None
,
load_fc
=
True
,
advprop
=
False
):
"""Loads pretrained weights from weights path or download using url.
Args:
model (Module): The whole model of efficientnet.
model_name (str): Model name of efficientnet.
weights_path (None or str):
str: path to pretrained weights file on the local disk.
None: use pretrained weights downloaded from the Internet.
load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
advprop (bool): Whether to load pretrained weights
trained with advprop (valid when weights_path is None).
"""
# AutoAugment or Advprop (different preprocessing)
url_map_
=
url_map_advprop
if
advprop
else
url_map
state_dict
=
paddle
.
load
(
url_map_
[
model_name
])
if
load_fc
:
model
.
set_state_dict
(
state_dict
)
else
:
state_dict
.
pop
(
'_fc.weight'
)
state_dict
.
pop
(
'_fc.bias'
)
model
.
set_state_dict
(
state_dict
)
print
(
'Loaded pretrained weights for {}'
.
format
(
model_name
))
paddle/scripts/infrt_build.sh
浏览文件 @
f3531c7b
...
...
@@ -44,11 +44,6 @@ function update_pd_ops() {
cd
${
PADDLE_ROOT
}
/tools/infrt/
python3 generate_pd_op_dialect_from_paddle_op_maker.py
python3 generate_phi_kernel_dialect.py
# generate test model
cd
${
PADDLE_ROOT
}
mkdir
-p
${
PADDLE_ROOT
}
/build/models
python3 paddle/infrt/tests/models/abs_model.py
${
PADDLE_ROOT
}
/build/paddle/infrt/tests/abs
python3 paddle/infrt/tests/models/resnet50_model.py
${
PADDLE_ROOT
}
/build/models/resnet50/model
}
function
init
()
{
...
...
@@ -114,6 +109,14 @@ function create_fake_models() {
# create multi_fc model, this will generate "multi_fc_model"
python3
-m
pip uninstall
-y
paddlepaddle
python3
-m
pip
install
*
whl
# generate test model
cd
${
PADDLE_ROOT
}
mkdir
-p
${
PADDLE_ROOT
}
/build/models
python3 paddle/infrt/tests/models/abs_model.py
${
PADDLE_ROOT
}
/build/paddle/infrt/tests/abs
python3 paddle/infrt/tests/models/resnet50_model.py
${
PADDLE_ROOT
}
/build/models/resnet50/model
python3 paddle/infrt/tests/models/efficientnet-b4/model.py
${
PADDLE_ROOT
}
/build/models/efficientnet-b4/model
cd
${
PADDLE_ROOT
}
/build
python3
${
PADDLE_ROOT
}
/tools/infrt/fake_models/multi_fc.py
python3
${
PADDLE_ROOT
}
/paddle/infrt/tests/models/linear.py
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录